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Abstract

This deliverable reports the work conducted within WP3 on structure induction at sentence level
for low-resource neural machine translation (NMT). It focuses on three main tasks: inducing word
alignments, learning structured sentence models, and exploiting the probabilistic framework for
better decisions and data-efficient NMT. We report on progress in the second half of the project.
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1 Introduction

WP3 provides scientific advances in machine translation for the low-resource setting by developing
probabilistic learning algorithms which induce and exploit structured representations of sentences
and documents. WP3 has four main goals:

• Develop methods which explicitly model inter-dependencies between terms in the source
and target sentences as latent alignments, and induce them in such a way as to be beneficial
for the translation quality;

• Develop algorithms which induce structured representations of sentences and documents
from parallel and monolingual data;

• Develop both NMT methods which exploit these induced representations and methods which
optimise for translation and structure induction in an end-to-end fashion.

• Exploit and advance implications of the probabilistic formulation of neural machine transla-
tion models, in particular, where this will lead to advances in low-resource settings.

To cover these goals we proposed 3 tasks, namely,

T3.1 Modelling latent alignments (Section 2);

T3.2 Structured sentence models (Section 3);

T3.3 Probabilistic neural machine translation (Section 4)

The first half of the project has seen considerable progress in all three fronts of the work package
with some emphasis on T3.2 and this work has been described in the M18 Deliverable D3.1 Initial
progress report on learning structural models. The second half of the project similarly advanced
along all three tasks, with some emphasis on T3.1 and T3.3. The work reported here has appeared
in conference publications, MSc theses, pre-prints under review, and has led to the release of open-
source software and data. This document is an overview of this research output, in particular, it
highlights research challenges and progress due to GoURMET.

2 Task 3.1 – Modelling Latent Alignments

Proposal highlights:

• induce alignments as latent variable jointly with a simpler NMT system (one that makes
stronger independence assumptions than standard NMT does);

• overcome intractability with variational inference and investigate both discrete and approx-
imately discrete alignments;

• combine alignments with NMT aiming at improved translation quality.
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As the field commits to standardised architectures and pre-trained models, largely due to their
potential for multilingual training and transfer learning, modifying the internal structure of the
model to exploit explicit word alignments is not as relevant a path as it seemed at the beginning of
the project. One of the advantages of word alignments is that they provide a transparent and human-
interpretable lens into what information models exploit to perform predictions. Here we report on
work that retains that exact motivation, but uses alignment as analysis—rather than modelling—
tools to advance our understanding of NMT from training to generation.

Summary of work done. In Section 2.1, we use a post-hoc explanation technique to investigate
the influence of source and target context to each generation step in NMT. This can be thought of
viewing the implict way in which a prediction is aligned to or influenced by the different types of
contex. This analysis tells us more about NMT training and generation and informs strategies that
mitigate certain known biases of NMT models (e.g., exposure bias). In Section 2.2, we then ana-
lyse NMT models in terms of components of a statistical machine translation pipeline, including
components based on word alignments. Such an analysis sheds light onto what’s expected of an
NMT model throughout its training in terms of performance along dimensions such as fluency, ad-
equacy and word order. This increased understanding can be used, for example, in settings where
an NMT teacher model guides the training of NMT student model, as it is common in the training
of non-autoregressive machine translation models, which we investigate in Section 2.3.

2.1 Analysing the Source and Target Contributions to Predictions in NMT

In NMT, the generation of a target token is influenced by two types of context: the source and the
prefix of the target sequence. While many attempts to understand the internal workings of NMT
models have been made, none of them explicitly evaluates relative source and target contributions
to a generation decision.

In (Voita et al., 2021a), we argue that this relative contribution can be evaluated by adopting a
variant of layerwise relevance propagation (LRP), a type of model explanation technique. We
extend LRP to the Transformer and conduct an analysis of NMT models which explicitly evaluates
the source and target relative contributions to the generation process. We analyze changes in these
contributions when conditioning on different types of prefixes, when varying the training objective
or the amount of training data, and during the training process. We find that models trained with
more data tend to rely on source information more and to have more sharp token contributions; the
training process is non-monotonic with several stages of different nature.

Data. We use random subsets of the WMT14 En-Fr dataset of different size: 1m, 2.5m, 5m, 10m,
20m, 30m sentence pairs.

Model. We follow the setup of Transformer base model (Vaswani et al., 2017) with the standard
training setting (for complete details see (Voita et al., 2021a)).

Findings. During the generation process, the influence of source decreases (or, equivalently, the
influence of the prefix increases)—see Figure 1a. This is expected: with a longer prefix, the model
has less uncertainty in deciding which source tokens to use, but needs to control more for flu-
ency. On average, source tokens at earlier positions influence translations more than tokens at later
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Figure 1: (a) contribution of the whole source at each generation step; (b) total contribution of source
tokens at each position to the whole target sentence.

Figure 2: For each generation step, the figure shows entropy of (a) source, (b) target contributions to
the prediction.

ones—see Figure 1b. This may be because the alignment between English and French languages
is roughly monotonic. We leave for future work investigating the changes in this behavior for lan-
guage pairs with more complex alignment. We now look at how ‘sharp’ contributions of source or
target tokens are at different generation steps by evaluating entropy of normalised source or target
contributions. Figure 2a shows that during generation, entropy increases until approximately 2/3 of
the translation is generated, then decreases when generating the remaining part. Figure 2b shows
that entropy of target contributions is higher for longer prefixes. This means that the model does
use longer contexts in a non-trivial way. Now, rather than generation from a converged model,
we turn to analyzing the training process of an NMT model. Specifically, we look at the changes
in how the predictions are formed (e.g., changes in the amount of source/target contributions and
in the entropy of these contributions) over the course of training. Our main findings are summar-
ized in Figure 3, in particular, the training process is non-monotonic with several distinct stages.
These stages agree with the ones found in previous work focused on validating the lottery ticket
hypothesis (Frankle and Carbin, 2019; Frankle et al., 2020), which suggests future investigation of
this connection. In the paper, we also connect over-reliance on target history to exposure bias and
hallucination. In future work, our methodology can be used to measure the effects of different and
novel training regimes on the balance of source and target contributions.
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Figure 3: Evolution of source and target contributions to prediction over the course of training.

Figure 4: (a) KenLM scores (horizontal dashed lines are the scores for the references); (b) proportion
of tokens of different frequency ranks in model translations. En-Ru.

2.2 The Training Process of NMT through the Lens of Classical SMT

Differently from the traditional statistical MT that decomposes the translation task into distinct
separately learned components, neural machine translation uses a single neural network to model
the entire translation process. While this has led to improved translation quality and transfer, it
limits our understanding of the model and hence our ability to improve specific aspects of NMT’s
design and training.

In (Voita et al., 2021b), we analyse the output of NMT over the course of training relating its
competences to three core SMT components and find that during training, NMT first focuses on
learning target-side language modeling, then improves translation quality approaching word-by-
word translation, and finally learns more complicated reordering patterns.

Data. We use the WMT14 news translation shared task for English-German (5.8m sentence
pairs) and English-Russian (2.5m sentence pairs).

Methodology. We train Transformer base models (Vaswani et al., 2017) and analyse model
outputs after a number of batches of training along a number of dimensions. We investigate fluency
in terms of n-gram LMs (Heafield et al., 2013), we analyse word order in terms of fuzzy reordering
score (Talbot et al., 2011) and Kendall tau distance, for which we word-align model outputs and
reference using fast align (Dyer et al., 2013).
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Figure 5: Translations at different steps during training. En-De.

Figure 6: (a) BLEU score; (b) token-level accuracy (the proportion of cases where the correct next
token is the most probable choice). WMT En-Ru.

Findings. The beginning of training is mostly devoted to target-side language modeling. We see
huge changes in the LM scores (Figure 4a) with generated outputs performing better under simpler
LMs (e.g., 2-gram) than more complicates ones (e.g., 5-grams), which shows that early in training
translations tend to consist of frequent words and bigrams (but larger sequences are not necessarily
fluent). In earlier iterations, all generated tokens are from the top-10 most frequent tokens, then
only from the top-50, and only later less frequent tokens are starting to appear—see Figure 4b.
Finally, early in training, the model hallucinates frequent n-grams (Figure 5).

Early in training, the model quickly improves its lexical choices, see Figure 6a for BLEU score on
the development set during training and Figure 6b for token-level accuracy as a function of token
frequency. We see that both the BLEU score and accuracy become large very fast, e.g. after the
first 20k iterations (25% of the training process), the scores are already good. During the last half
of the training, BLEU scores improve only by 0.5 and accuracy does not seem to change much,
especially for rare tokens. Next we will discuss what happens in that phase.

In the second half of the training, the model is slowly refining translations, and, among the three
competences we look at, the most visible changes are due to more complicated (i.e. less mono-
tonic) reorderings—see Figure 7. The change in the fuzzy reordering score is only twice smaller
than during the preceding stage. Moreover, the alignments keep changing and become less mono-
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Figure 7: (a) fuzzy reordering score (for references: 0.6), (b) Kendall tau distance (for references:
0.06); WMT En-Ru. The arrows point in the direction of less monotonic alignments (more
complicated reorderings).

Figure 8: Translations at different training steps. Same-colored chunks are approximately aligned to
each other.

tonic even after both BLEU and token-level accuracy converged, i.e. iterations after 80k (Figure
7). Overall, we interpret this refinement stage as the model slowly learning to reduce interference
from the source text and exacerbated even more in NMT: it learns to apply complex reorderings
to more closely follow typical word order in the target language. This means that while language
modeling improves more prominently during the first training stage, there is a long tail of less
frequent and more nuanced patterns that the model learns later. This is additional evidence against
using BLEU as a stopping criterion (Voita et al., 2019a). See examples of changes that happen in
this last stage in Figure 8.

In summary, we show that during a large part of the training, the translation quality (e.g., BLEU)
changes little, but the alignments become less monotonic. Intuitively, the translations become
more complicated while their quality remains roughly the same. One way to directly apply our
analysis is to consider tasks and settings where data properties such as regularity and/or simplicity
are important, e.g. in data augmentation. For example, in neural machine translation, higher
monotonicity of artificial sources was hypothesized to be a facilitating factor for back-translation;
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additionally, complexity of the distilled data is crucial for sequence-level dis- tillation in non-
autoregressive machine translation.

2.3 Improving Knowledge Distillation for NAT-MT

Non-autoregressive neural machine translation (NAT-MT; Gu et al., 2018) is different from the
traditional NMT in the way it generates target sequences: instead of the standard approach where
target tokens are predicted step-by-step by conditioning on the previous ones, NAT models predict
the whole sequence simultaneously. This is possible only with an underlying assumption that the
output tokens are independent from each other, which is unrealistic for natural language. For-
tunately, while this independence assumption is unrealistic for real references, it might be more
plausible for simpler sequences, e.g. artificially generated translations. That is why targets for
NAT models are usually not references but beam search translations of the standard autoregressive
NMT (which, as we already mentioned above, are simpler than references in many aspects). This
is called sequence-level knowledge distillation (Kim and Rush, 2016), and it is currently one of
the de-facto standard parts of the NAT-MT training pipelines (Gu et al., 2018; Zhou et al., 2020).
Recently Zhou et al. (2020) showed that the quality of a NAT model strongly depends on the com-
plexity of the distilled data, and changing this complexity can improve the model. Since distilled
data consists of translations from a standard autoregressive teacher, our analysis of Section 2.2
suggests a very simple way of modifying the complexity of this data.

In (Voita et al., 2021b) we propose to use as teachers intermediate check-points during training,
rather than a fully converged model, capitalising on the findings of Section 2.2.

Data. The dataset is WMT14 English-German (En-De) with newstest2013 as the validation set
and newstest2014 as the test set, and BPE vocabulary of 37,000. We use the preprocessed dataset
and the vocabularies released by Zhou et al. (2020).

Model. The NAT-MT model is the re-implemented by Zhou et al. (2020) version of the vanilla
NAT by Gu et al. (2018). The teacher is the standard Transformer-base from fairseq (Ott et al.,
2019). For the baseline distilled dataset, we use the fully converged model (in this case, the model
after 200k updates). For other datasets, we use earlier check-points.

Findings. Since during a large part of training, NMT quality (e.g., BLEU) changes little, but
the alignments become less monotonic, earlier checkpoints produce simpler and more monotonic
translations, which in turn are better targets for NAT-MT. Figure 9c shows the BLEU scores for
NAT models trained with distilled data obtained from different teacher’s checkpoints; the baseline
is the fully converged model (200k iterations). We see that by taking an earlier checkpoint, after
40k iterations, we improve NAT quality by 1.1 BLEU. For this checkpoint, the teacher’s BLEU
score is not much lower than that of the final model (Figure 9a), but the reorderings are much
simpler (a higher fuzzy reordering score in Figure 9b).

3 Task 3.2 – Structured Sentence Models

Proposal highlights:
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Figure 9: (a) BLEU score of the autoregressive (AT) Transformer-base (teacher for distillation); (b)
fuzzy reordering score for the distilled training data obtained from checkpoints of the AT
teacher; (c) BLEU scores for the vanilla NAT-MT model trained on different distilled data.

• we aim to develop NMT models that induce structured representations at sentence level (e.g.,
trees, graphs, latent factors);

• techniques to be investigate include discrete structure via REINFORCE, continuous relaxa-
tions, and iterative refinement;

• we will develop joint models representing structure of both source and target sentences, with
the goal of achieving better data efficiency;

• we will exploit supervised tree banks for the resource-rich language (English in our case);

• as parallel data is scarce in the lower-resource setting, we will combine parallel and mono-
lingual corpora.

This task focuses on learning structured combinatorial representations that can lead to improved
generalisation and/or data efficiency. Examples include: sparse sentence and/or document embed-
dings, structured attention, syntactic trees and/or semantic graphs.

Summary of work done. We report progress in two fronts, one focused on learning sparse
unobserved variables, this aims at advancing technology that will enable latent structure in deep
models (including NMT), another focused on making use of context beyond the sentence level. In
the first front, we (i) develop a theoretical framework for learning with mixed random variables
unifying various previously introduced techniques, including techniques that we developed in the
first half of the project, and also proposing novel ones, finally, this technique is applied to sparsify
the encoder states of an NMT model; in the second front, we continue on the path started in the
first half of the project, and take steps towards compact context-aware translation models.

3.1 Mixed Random Variables

Neural networks and other machine learning models compute continuous representations, while
humans communicate mostly through discrete symbols. Reconciling these two forms of com-
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Figure 10: Multivariate distributions over the probability simplex. Standard distributions, like the
Logistic-Normal (left), assign zero probability to all faces except to the relative interior of the
simplex. Mixed distributions support assigning probability to the full simplex, including its
boundary: the Gaussian-Sparsemax (right) induces a distribution over the 1-dimensional
edges (shown as a histogram), and assigns Pr{(1, 0, 0)} = 0.022.

munication is desirable for generating human-readable interpretations or learning discrete latent
variable models, while maintaining end-to-end differentiability. Some existing approaches (such
as the Gumbel-Softmax transformation (Jang et al., 2017; Maddison et al., 2017)) build continu-
ous relaxations that are discrete approximations in the zero-temperature limit, while others (such as
the Hard Concrete distribution (Louizos et al., 2018) and our own Hard Kumaraswamy distribution
(Bastings et al., 2019)) produce discrete/continuous hybrids.

In (Farinhas et al., 2022), we build rigorous theoretical foundations for these hybrids, which we call
“mixed random variables”. Armed with a better theoretical understanding of these techniques, we
extend them to the multivariate case, which was not known before (Figure 10 illustrates a simple
example of a mixed random variable for sparse 3-dimensional probability vectors) and various
feasible instances of it.

Methodology. Our starting point is a new “direct sum” base measure defined on the face lattice
of the probability simplex. From this measure, we introduce new entropy and Kullback-Leibler
divergence functions that subsume the discrete and differential cases and have interpretations in
terms of code optimality. Our framework suggests two strategies for representing and sampling
mixed random variables, an extrinsic (“sample-and-project”) and an intrinsic one (based on face
stratification). In the paper, we experiment with both approaches on an emergent communication
benchmark (Lazaridou and Baroni, 2020), on modeling MNIST (LeCun et al., 2010) and Fashion-
MNIST (Xiao et al., 2017) data with variational auto-encoders (Kingma and Welling, 2014) with
mixed latent variables, as well as simplex-valued regression towards sparse voting proportions
(Gordon-Rodriguez et al., 2020) showing results superior to techniques based on biased gradi-
ents (Jang et al., 2017), purely continuous relaxations (Maddison et al., 2017), and noisy policy
gradients (Williams, 1992).

Discussion. Mixed random variables enable differentiable representations that retain a combin-
atorial inductive bias. Earlier instances in NLP have been used for rationale extraction (Bastings
et al., 2019), analysis of NMT (Voita et al., 2019b) and other Transformer models (De Cao et al.,
2020), they have, however, been limited to the 2-dimensional case which accounts for the inductive
bias of a switch/selector (or a collection of independent switches/selectors). Our extensions are a
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Figure 11: Encoder-decoder attention distribution of target words (vertical axis) over source words
(horizontal axis) for vanilla attention (Vaswani et al., 2017), sparse attention (Correia et al.,
2019) (which aims at sparsity with respect to individual decoder steps) and our model
(Zhang et al., 2021). Darker color indicates larger attention weight, and the white blocks
denote an attention weight of 0. The source words whose encoding is pruned by L0DROP
(receiving zero weight) are highlighted in red.

pathway to other inductive biases such as categorical or structured variables with dependent parts.

3.2 Sparse Encoders

Sequence-to-sequence models usually transfer all encoder outputs to the decoder for generation.
We hypothesize that these encoder outputs can be compressed to shorten the sequence delivered
for decoding, in a way somewhat reminiscent of phrase-based models.

In (Zhang et al., 2021), we take Transformer models (Vaswani et al., 2017) as the testbed and
introduce a layer of stochastic gates (which we term L0DROP) in-between the encoder and the
decoder. The gates are regularized using the expected value of a sparsity-inducing L0 penalty
(Louizos et al., 2018; Bastings et al., 2019),1 resulting in completely masking-out a subset of en-
coder outputs. In other words, via joint training, the L0DROP layer forces the Transformer to route
information through a subset of its encoder states. We investigate the effects of this sparsification
on two machine translation and two summarization tasks.

Approach. We aim at detecting uninformative source encodings and dropping them to shorten
the encoding sequence before generation. To this end, we build on recent work on sparsifying
weights (Louizos et al., 2018) and activations (Bastings et al., 2019) of neural networks. Spe-
cifically, we insert a differentiable neural sparsity layer (L0DROP) in-between the encoder and the
decoder. The layer can be regarded as providing a multiplicative scalar gate for every encoder
output. The gate is a random variable and, unlike standard attention, can be exactly zero, effect-
ively masking out the corresponding source encodings. The sparsity is promoted by introducing an
extra term to the learning objective, i.e. an expected value of the sparsity-inducing L0 penalty. By
varying the coefficient for the regularizer, we can obtain different levels of sparsity. Importantly,
the objective remains fully end-to-end differentiable. Given an encoding sequence of length N,
the vanilla attention model attends to it recurrently for M steps at the decoding phase, leading to
a computational complexity of O(NM). This could be costly if N or M is very large. With the

1 This technique is built upon a 2-dimensional special case of our mixed random variables of Section 3.1.
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induced sparse structure by L0DROP, we introduce a specialized decoding algorithm which lowers
this complexity to O(N′M) with N′ ≤ N . As a result, L0DROP can improve decoding efficiency
by reducing the encodings’ length, especially for long inputs. See Figure 11 for an illustration of
L0DROP and how it differs from existing work.

Datasets. We conduct extensive experiments on WMT translation tasks with two language pairs
(WMT14 English-German (Bojar et al., 2014) and and WMT18 Chinese-English (Bojar et al.,
2018)) and document summarization tasks (CNN/Daily Mail (Hermann et al., 2015) and WikiSum
(Liu* et al., 2018)). We adopt BLEU (Papineni et al., 2002) and ROUGE-L (Lin, 2004) to evaluate
the translation and summarization quality, respectively.

Findings. Our main findings are summarized as follows:

• We confirm that the encoder outputs can be compressed, around 40–70% of them can be
dropped without large effects on the genera- tion quality.

• The resulting sparsity level differs across word types, the encodings corresponding to func-
tion words (such as determiners, prepositions) are more frequently pruned than those of
content words (e.g., verbs and nouns).

• L0DROP can improve decoding efficiency particularly for lengthy source inputs. We achieve
a decoding speedup of up to 1.65x on document summarization tasks and 1.20x on character-
based machine translation task. Filtering out source encodings with rule-based sparse pat-
terns is feasible, and confirms information-theoretic expectations, although rule-based pat-
terns do not generalize well across tasks.

3.3 Exploiting Context Beyond Sentence Level

In a realistic scenario, an end user is interested in translating documents, or some other form
of coherent excerpt of text. Given the richness of linguistic phenomena going on in translation
already at the sentence level (arguably even within clauses), it is understandable why so much
research focuses on independent translation of (shorter) segments such as sentences. The grow-
ing need for translation in applied settings where context is crucial is pushing the community
to look into solutions to this modelling challenge (Wang et al., 2017; Miculicich et al., 2018;
Voita et al., 2018; Zheng et al., 2020). Standard NMT factorises the probability of a document
D = 〈(x(1), y(1)), . . . , (x(S ), y(S ))〉

p(D|θ) =

|D|∏
s=1

p(y(s)|x(s), θ) (1)

as if sentence pairs inD were independent of one another. So called document-level NMT models
the probability of a documentD as follows:

p(D|θ) =

S∏
s=1

p(y(s)|x(1:S ), y(1:s−1), θ) , (2)

where y(1:s−1) corresponds to the history of already generated target sentences and x(1:S ) is the en-
tire source document. Crucially, document-level (or context-aware) NMT models the document
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without making the independence assumptions of standard sentence-level NMT. The model like-
lihood given a dataset of document pairs then factorises independently over documents (but not
independently over sentences), which is far more reasonable. This does require parallel data annot-
ated with document alignments which poses some challenge in the low-resource setting. Moreover,
architectures that can condition on information beyond the sentence boundary are typically larger
requiring more parameters to be estimated and thus more data. In the first half of the project, we
aimed at addressing limitations of document-level NMT more generally including model design,
evaluation, and impact of finer-grained document-level annotation. In the second half of the project
we attempted to design architectures that exploit context without requiring extending the memory
mechanism of a Transformer decoder to accommodate the entire history of sentences.

Methodology. We investigate a combination of prefix tuning (Li and Liang, 2021) and vari-
ational NMT (Zhang et al., 2016) which allows us to i) conditionl on large context efficiently and
ii) reuse pre-trained NMT components. We start with a setence-level NMT component p(y(s)|x(s), θ)
and extend it to condition on a prefix embedding z(s), which we pre-prend to the sth target sentence
y(s) in the document before sentence-level decoding. This embedding is drawn from a Gaussian
distribution

N(µ(x, vs; φ), σ2(x, vs; φ))

whose parameters depend on the complete source-language document and the history of already
generated sentences through a compact bag-of-words representation of x(1:S ), denoted by x, and
y(1:s−1), denoted by vs. Clearly, a Transformer-based encoding of x(1:S ), y(1:s−1) would require pro-
cessing an ever growing sequence of inputs, we use a bag of words representation instead in order
to keep our models compact. Finally, we estimate the parameters λ by optimising the evidence
lowerbound (ELBO):

Eq(z(s) |x,y,λ)

 S∑
s=1

log p(y(s)|x(s), z(s), θ) + log p(z(s)|x, y, φ) − log q(z(s)|x, y, λ)

 (3)

where q(z(s)|x, y, λ) is a Gaussian variational approximation to the model’s posterior distribution
over latent codes, which additional conditions on a bag-of-words representation of the target doc-
ument y(1:S ), denoted y. Importantly, we optimise the ELBO with respect to the Gaussian para-
meters φ and λ, while leaving the NMT parameters θ fixed. The embedding z learns to control
the sentence-level component adapting it to the context-level setting, it also informs the decoder
of shallow document-level features captured by the bag-of-words representation of the documents.
For training, we use reparameterised gradients (Kingma and Welling, 2014) as in variational neural
machine translation (Zhang et al., 2016; Eikema and Aziz, 2019).

Findings. We use a Marian NMT (Junczys-Dowmunt et al., 2018) pre-trained component and
investigate the effect of training it using the 2to2 objective of Fernandes et al. (2021) as well as our
proposed approach. Note that 2to2 optimises a document-level NMT loss while translating essen-
tially two adjacent sentences at a time, this requires extending the prefix of a target sequence with
the complete previous sentences. Our approach on the other hand, extends the prefix of Marian
with a single state and leaves Marian’s parameters untouched. Table 1 show preliminary results
on IWSLT14 English-German, here a document is an entire TED talk, which we can condition on
efficiently due to our compact latent document embedding model. We probed for improvements
along the pronoun dimension using a contrastive evaluation set (Müller et al., 2018). Our approach
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Model BLEU COMET

NMT 32.63 0.4766
2to2 34.50 0.5259
latent control 34.60 0.5277

Table 1: Translation performance of context-aware MT on IWSLT14 English-German (test).

does not lead to improvements along that dimension, which is somewhat expected given the bag-
of-words view is unlikely to help with coreferences. The nature of our document embeddings is
more aligned with improvements along lexical cohesion (Bawden et al., 2018), but analysing the
model in this dimension is ongoing work.

4 Task 3.3 – Probabilistic Neural Machine Translation

Proposal highlights:

• Revise decision rules in NMT to exploit NMT models as probability distributions. Here we
seek to make predictions with a holistic view of the model’s beliefs.

• Introduce global statistics to decision rules. This may take the form of n-gram statistics, and
other edit operations sensitive to insertion, substitution, and word order differences. This can
also accommodate document-level statistics.

• Make use of Bayesian modelling techniques to improve the data efficiency of NMT models.
This may take the form of Bayesian priors in parameter and/or function space. Changes to
the way NMT factorises the probability of observations with the goal of better uncertainty
management and increased data efficiency are also relevant.

Summary of work done. In the first half of the project we uncovered evidence that the in-
adequacy of high-scoring translations in NMT (Koehn and Knowles, 2017; Murray and Chiang,
2018b; Stahlberg and Byrne, 2019) is not on its own indicative of failure of the model to cap-
ture essential properties of translations, but rather a predictable property of Markov processes. In
the second half of the project we expand on this point, finding stronger arguments and evidence
(Section 4.1), and advance our algorithms for approximate minimum Bayes risk decoding (Sec-
tion 4.2), making them more scalable and accurate (Sections 4.3 and 4.4). We also investigate
so-called loss-calibrated objectives (Section 4.5), in an attempt to optimise the training algorithm
for compatibility with the decoding algorithm.

Background

NMT employs neural networks (NNs) to predict a conditional probability distribution Y |θ, x over
translation candidates (i.e., all finite-length sequence of target-language symbols) of any given
source sentence x. To predict such a complex object efficiently, NMT factorises the distribution as
a chain of random draws from Categorical distributions

Y j|θ, x, y< j ∼ Categorical( f (x, y< j; θ)) (4)
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parameterised in context. The prefix translation y< j starts empty and grows one symbol at a time
until a special end-of-sequence symbol is drawn. At each step j, f maps from varying inputs
(x, y< j) to a probability distribution over the vocabulary. Common choices for f include recurrent
networks (Sutskever et al., 2014; Bahdanau et al., 2015), convolutional networks (Gehring et al.,
2017), graph convolutional networks (Bastings et al., 2017), and Transformers (Vaswani et al.,
2017). Given a dataset D of translation pairs, the NN parameters θ are estimated to attain a local
optimum of the regularised log-likelihood function

θMLE = arg max
θ

E(x,y)∼D[log pY |X(y|x, θ)] − R(θ), (5)

via stochastic gradient back-propagation (here R is a regulariser). This procedure approximates
maximum likelihood estimation (MLE), which aims to mimic the unknown distribution of the
training data.

After training, and for a given input, choosing a translation requires a decision rule to map from
a distribution over translation candidates to a single ‘preferred’ translation. The most common
decision rule in NMT is maximum-a-posterior (MAP) decoding, which outputs the most probable
translation under the model (i.e., mode of the conditional distribution):

y(MAP) = arg max
h∈Y

log pY |X(h|x, θ) . (6)

As this is intractable, beam search (Graves, 2012) is used. Beam search is a pruned version of
breadth-first search which maintains an active set of k partial translations. For large beam size k,
translation quality degrades (Koehn and Knowles, 2017) and the exact y(MAP) is often the empty
sequence (Stahlberg and Byrne, 2019). Therefore, in practice, the beam size is kept small and the
objective is length normalised to up-rank longer hypotheses (Murray and Chiang, 2018a). Despite
the widespread intuition that MAP decoding is an obvious choice, MLE is oblivious to our desire
to form predictions using the MAP decoder (or any decoder, for that matter).

4.1 Inadequacy of the Mode in Markov Processes

Certain Markov processes are stationary and ergodic, these two properties together lead to a result
known as asymptotic equipartition property (AEP; Gray, 2011). When an AEP holds for a Markov
process, the surprisal (negative log probability) of a trajectory sampled from the process is within
a margin of the entropy rate of the process, this is true almost surely as the length of the trajectory
increases. The set of such samples, which are the samples we are bound to observe if we just
run the process, is known as the typical set. In simple terms, the AEP tells us that trajectories
drawn from a Markov process show a concentration towards average surprisal: they are never too
suprising (i.e., we will not sample trajectories whose probabilities are the lowest nor the highest).
An AEP for NMT would have strong formal implications. For example, if NMT is a Markov
process that does not generate extreme outcomes, an objective such as MLE (Equation 5) will
lead to reference translations receiving typical probability, rather than maximum probability. This
would cast doubt on MAP decoding and its approximations at a rather formal level.

NMT’s generative story does prescribe a Markov process for each source sentence x. We sketch it
here:
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• Start from a initial state (x, .) that stores a transformation of the source and a special begin-
of-sequence symbol . (i.e., an empty translation prefix), from there an NN computes a V-
dimensional vector f (x, .; θ) of transition probabilities.2

• With probability 0 < fa(x, .; θ) < 1 we move to state (x, . a). At this point, we use the same
NN to compute a V-dimensional vector f (x, . a; θ) of transition probabilities, and this time
we move to state (x, . a b) with probability fb(x, . a; θ).

• This goes for each step j: the state of the system stores a transformation of x, y< j, the V
transition probabilities f (x, y< j; θ) are predicted in context, and the system moves on to state
f (x, y< j w; θ) by drawing a word w with probability 0 < fw(x, y< j; θ) < 1.

• Wheneve we draw a special end-of-sequence symbol /, we reset the state to (x, .). The
sequence of symbols drawn between two visits to state (x, .) is interpreted as a translation
candidate.

It is clear, by construction, that a translation y1:J is drawn from this Markov process with probability
given by

∏J
j=1 fy j(x, y< j; θ), hence this Markov process has as invariant measure the distribution

whose probability mass function is shown in Equation (4). The construction above tells us two
things. First, that we can draw independent samples from NMT via a simple procedure that takes
linear time in sequence length—this procedure is known as ancestral sampling (Robert and Casella,
2010). Second, that the state of NMT is not limited in any way, until, of course, its reset when
we hit the end-of-sequence symbol. The latter means that NMT is a non-ergodic Markov process,
hence an AEP cannot be trivially stated and proven for NMT. While it is hard to prove that an AEP
holds for NMT, it is easy to inspect whether NMT systems exhibit effects that are consistent with
it.

Methodology. We analyse the systems developed for the studies reported in (Eikema and Aziz,
2020), these are Transformer base models covering three language pairs with varying amount of
resources for training: English into and from German, Nepali and Sinhala. For German-English
(de-en) we use all available WMT’18 (Bojar et al., 2018) news data except for Paracrawl, resulting
in 5.9 million sentence pairs; for the other two pairs we use the data setup by Guzmán et al. (2019).
For a validation set, we draw 1,000 samples from the model and observe that:

• the distribution of surprisals indeed shows behaviour consistent with an AEP;

• the surprisal of reference translations is close to that of the average suprisal (in a thousand
samples)—see an example in Figure 12;

• beam search outputs are seldom amongst sampled translations, and are clear outliers in sur-
prisal plots (true for more than 50% of instances in high-resource pair, and more than 90%
of instances in low-resource pairs).

2 We use V for target vocabulary size.
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Figure 12: Distribution of surprisal based on 1,000 samples from the model. Source: Der Großbrand
in einem als besonders gefährlich geltenden Chemiewerk in der nordfranzösischen Stadt
Rouen ist gelöscht. Reference: The large fire was put out at a chemical plant considered to
be particularly hazardous and located in the northern French city of Rouen. Beam search
output: The big fire in a particularly dangerous chemical plant in the northern French town
of Rouen has been extinguished.

Discussion. These observations are significant for they explain why the reference translation
is assigned lower probability than beam outputs. Prior literature has interpreted this as a flaw in
model design or problem with parameter estimation. An alternative explanation is that nothing
about NMT design and training gives the mode special status, and that, to date, mode-seeking
search has been employed not for its obvious plausibility but simply following an intuition that
need not hold for Markov processes (namely, that the most probable translation is in any sense
representative of the model’s beliefs). Some of these results have been discussed in our earlier
paper (Eikema and Aziz, 2020), which received the best paper award at Coling. An extensive
followup is in preparation at the time of writing.

4.2 Sampling-Based MBR Decoding

Minimum Bayes risk (MBR) decoding stems from the principle of maximisation of expected utility
(Berger, 1985). A utility function u(y, h) measures the benefit in choosing h ∈ Y when y ∈ Y is
the ideal decision. When forming predictions, we lack knowledge about ideal translations and
must decide under uncertainty. MBR lets the model fill in ‘ideal decisions’ probabilistically as we
search through the space of candidates for the one which is assigned highest utility in expectation:

y(MBR) = arg max
h∈Y

E[u(Y, h) | θ, x]︸            ︷︷            ︸
Cµu(h;x,θ)

. (7)

MBR has a long history in parsing (Goodman, 1996; Sima’an, 2003), speech recognition (Stol-
cke et al., 1997; Goel and Byrne, 2000), and MT (Kumar and Byrne, 2002, 2004), including,
more recently, neural machine translation (Stahlberg et al., 2017; Blain et al., 2017; Eikema and
Aziz, 2020). In MT, u can be a sentence-level evaluation metric (e.g., METEOR (Lavie and Agar-
wal, 2007), Sentence BLEU (Chen and Cherry, 2014)), BEER (Stanojević and Sima’an, 2014),
BLEURT (Sellam et al., 2020), COMET (Rei et al., 2020), etc.). Intuitively, whereas the MAP
prediction is the translation to which the model assigns highest probability, no matter how idio-
syncratic, the MBR prediction is the translation that is closest (under the chosen u) to all other
probable translations. Seeking support for a prediction not only in terms of probability but also
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in terms of utility makes MBR decoding robust to situations where inadequate translations are
assigned high probability, as it often happens with the empty string (Stahlberg and Byrne, 2019),
when the training data are noisy (Ott et al., 2018), too small (Eikema and Aziz, 2020) or distant
from the test domain (Müller and Sennrich, 2021).

In (Eikema and Aziz, 2021), we develop Monte Carlo approximations to MBR and study their
properties.

Methodology. Like in MAP decoding, exhaustive enumeration of the hypotheses is impossible,
we must resort to a finite subsetH(x) of candidates. Unlike MAP decoding, the objective function
µu(h; x, θ) cannot be evaluated exactly. Most approximations to MBR decoding, from Kumar and
Byrne (2004) to recent instances (Stahlberg et al., 2017; Shu and Nakayama, 2017; Blain et al.,
2017), use k-best lists from beam search forH(x) and to form a biased estimate of expected utility.
In Eikema and Aziz (2020) we use unbiased samples from the model for both approximations: i)
we follow the generative story in Equation (4) to obtain N independent samples y(n) , a procedure
known as ancestral sampling (Robert and Casella, 2010); then, ii) for a hypothesis h, we compute
an MC estimate of µu(h; x, θ):

µ̂u(h; x,N)
MC
B

1
N

N∑
n=1

u(y(n), h) , (8)

which is unbiased for any sample size N. In Eikema and Aziz (2020) use the same N samples as
candidates and approximate Equation (7) by

y(MC) B arg max
h∈{y(1),...,y(N)}

µ̂u(h; x,N) . (9)

We call this class of MBR algorithms using unbiased MC estimation instances of sampling-based
MBR decoding.

Data. We perform experiments on three language pairs with varying amount of resources for
training: English into and from German (Bojar et al., 2018), Romanian (Bojar et al., 2016a) and
Nepali Guzmán et al. (2019). We train a Transformer base model (Vaswani et al., 2017) until
convergence and average the last 10 epoch checkpoints to obtain our final model. In all models
we disable label smoothing, as this has been found to negatively impact model fit, which would
compromise the performance of MBR (Eikema and Aziz, 2020). Complete details in (Eikema and
Aziz, 2021). For computational efficiency, we opt for non-neural evaluation metrics for use as
utility function in MBR. BEER (Stanojević and Sima’an, 2014) is a non-neural trained metric that
has shown good correlation with human judgements in previous WMT metrics shared tasks (Bojar
et al., 2016b).

Findings. We find that MBR steadily improves across language pairs as N grows larger, see
Figure 13. SacreBLEU (Post, 2018) scores improve at a similar rate to that of BEER, showing
no signs of overfitting to the utility. This is strong empirical evidence that sampling-based MBR
has no equivalent to the beam search curse. We see this as an important property of a decoding
objective.

The candidate set in our approximation do not need to be obtained using ancestral sampling, in
fact, ideally, they would come from a strategy that is biased towards enumerating outcomes with
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Figure 13: Quality of sampling-based MBR output for various sizes of N using BEER as target utility.
We report both BEER and BLEU scores.

Figure 14: Proportion plots of expected utility for 3 strategies for constructing H(x), using 100 trans-
lation candidates per strategy. We estimate expected utility using 1,000 samples. Results
are aggregated over 100 source sentences.

high expected utility first. As no such algorithm is currently available, we explore other strategies
that are known to perform well for NMT, namely, nucleus sampling (Holtzman et al., 2020) and
beam search. We compare each strategy by the expected BEER values of the translations generated,
using accurate estimates of expected BEER (using 1,000 samples for MC estimation) as this shows
us which candidate set has higher potential—see Figure 14. We find ancestral sampling to produce
hypotheses across the entire range of expected BEER scores. Nucleus sampling and beam search
generally produce translations at the higher end of expected BEER. Therefore, these seem more
suitable for generating effectiveH(x) at smaller N. Nucleus sampling seems to lead to the largest
proportion of high expected utility translations across language pairs. Beam search has a noticeably
high proportion of poor translations for English-Nepali, a low-resource language pair where mode-
seeking search has been observed to be less reliable. Results in the opposite direction were similar.

While we can choose which strategy to use for enumerating candidates, it is important to use
ancestral samples for estimation of expected utility of those candidates, for only ancestral sampling
is faithful to the model distribution by design and hence yields unbiased estimates. In Figure 15 we
illustrate this claim empirically by showing the bias of two alternative strategies: nucleus sampling
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(Holtzman et al., 2020) and ‘beam sampling’ (i.e., using k-best outputs from beam search for
estimating expected utility; Blain et al. (2017)).

Figure 15: Estimates of expected utility for various hypotheses. We plot practical estimates of expec-
ted utility (x-axis) using either ancestral, nucleus or ‘beam’ samples against an accurate
MC estimate using 1,000 ancestral samples. The gray line depicts a perfect estimator.

4.3 Scalable MBR Approximations

Our original algorithm (Eikema and Aziz, 2020) couples two approximations, namely, tractable
exploration and unbiased estimation of expected utility are based on the same N ancestral samples.
This leads to a large number of assessments of utility, which prevents exploration of even larger
hypothesis spaces. Our aim is to learn more about the impact of these two approximations, for
which we look into estimating expected utility using fewer (S ) samples. We call this approximation
MBR-N-by-S. With N × S assessments of utilities per decoding, rather than N × N, we can also
investigate a larger hypothesis spaceH(x).

In (Eikema and Aziz, 2021), we explore N (number of candidates) ranging from 210 to 1005, while
keeping S (the number of samples used for approximating expected utility of each hypothesis)
smaller, with S ranging from 10 to 200. We argue that S does not need to grow at the same pace
as N, as MC estimates should stabilize after a certain point. We find that growing N beyong 405
improves translation quality further, even when the estimates of expected utility are less accurate,
see Figure 16. Increasing S also steadily improves translation quality, with diminishing returns in
the magnitude of improvement. On the other hand, smaller values of S lead to notable deterioration
of translation quality and we note higher variance in results. For all language pairs it is possible to
improve upon the best MBR-N-by-N results by considering a larger hypothesis spaces and smaller
S . This experiment shows that the two approximations can be controlled independently and better
results are within reach if we explore more. On top of that, the best setting of MBR-N-by-N takes
164,025 utility assessments per decoding, MBR-N-by-S with S = 100 brings this number down
to 100,500 for the largest N considered, while improving BEER scores on all language pairs. We
note that again increasing either N or S generally improves translation quality in our experiments.
This further strengthens our previous finding that sampling-based MBR does not seem to have
an equivalent of the beam search curse. We have also developed other approximations aimed at
scaling the algorithm up to very large hypothesis spaces, extensive experiments are reported in a
pre-print (Eikema and Aziz, 2021).
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Figure 16: Performance of MBR-N-by-S: we estimate the expected utility of N hypotheses using S
samples. We show average performance over 3 runs with 1 standard deviation. The
dashed line shows the performance at N = S = 405.

4.4 Sample-Efficient Approximations of Expected Utility

The most obvious estimate of expected utility one can obtain is a Monte Carlo estimate, that is,
the sample mean utility against a number of independent samples from the model. The potential
issue with that is that the quantity used to rank translation candidates is therefore a random variable
(i.e., the Monte Carlo estimate). For small S , the variance of this estimate is too high leading to
unrealiable ranking. Growing S to reduce variance has two disadvantages: i) we need to sample
more from the model, which is costly, and ii) we need to perform more assessments of the utility
function, which can be quite expensive for modern neural utility functions such as BLEURT and
COMET. Moreover, the variance of MC estimation decays slowly as a function of S , more pre-
cisely, it decays only with the squared-root of S . Here we investigate estimators that are potentially
more sample-efficient than MC.

Methodology. An alternative to MC estimation is the so-called Bayesian Monte Carlo (BMC)
estimators (Rasmussen and Ghahramani, 2003). In BMC, we treat expected utility as a latent
variable drawn from a Gaussian process (GP) prior that ties a collection of N hypotheses together.
We then observe a number of assessments of utility for each hypothesis against a small number
S of samples (for example, S = 1 sample per hypothesis). These assessments are assumed to
be drawn from a Normal distribution whose mean (expected utility) is an N-dimensional latent
variable drawn from the GP. Next, we infer the posterior distribution over the unknown expected
utilities in closed-form (since the GP-Normal posterior is a multivariate Gaussian with known
mean and covariance). The GP exploits similarity between hypotheses to achieve greater variance
reduction than standard MC. Intuitively, whereas in MC we observe S samples per hypothesis and
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estimate the expected utility of each hypothesis independently, in BMC we observe S samples per
hypothesis and estimate their expected utilities jointly assuming that their estimates correlate (e.g.,
because the hypotheses themselves are similar or the samples against which we compute utilities
are similar). Concretely, we design the following BMC procedure:

µ1, . . . , µN ∼ N(m,Σ) (10)
for n = 1, . . . ,N (11)

u(y(s), h(n)) ∼ N(µn, σ
2) for s = 1, . . . , S . (12)

In words:

• we draw the expected utilities for all N hypotheses jointly from a multivariate Gaussian with
prior mean m and prior covariance matrix Σ (we will explain how those are set later);

• then, for each hypothesis h(n), we draw its utility against a sample y(s) from a Normal distri-
bution with mean µn and a fixed variance σ (shared across hypotheses).

We fix the prior mean and the observed variance empirically as to have prior predictive samples
cover a reasonable range of values (i.e., reasonable for the utility under consideration). The N-by-
N covariance matrix Σ is specified through a kernel function (we use the rbf kernel) and a feature
representation of the hypotheses. For features we use a vector of word counts (i.e., a bag of words
representation of the hypothesis). Let U denote N ×S observed utilities values (one per hypothesis
per sample), the posterior distribution over expected utility µ1, . . . , µN |U ∼ N(p,C) is a known
Gaussian whose parameters can be computed in closed-form (Rasmussen and Ghahramani, 2003)
in time O(N3), which is reasonable on CPUs for N in the order of hundreds, and on GPU can be
extended to thousands.3

Findings. Figure 17 assesses the potential of this estimator by comparing it to a robust and
expensive MC estimate of expected utility (computed using 1,000 samples). In this demonstration,
we aim to rank 100 candidates drawn via ancestral sampling for a portion of the German-English
dev set. The figure compares BMC using S < 1000 against an S -samples MC estimate. It is
clear that BMC exploits correlations very effectively. At only 1 sample per hypothesis the BMC
error is as good as MC using 75 samples. A complete evaluation of this approach within an MBR
procedure is ongoing work.

4.5 Loss-Calibrated Machine Translation

Loss-calibrated Bayes (Lacoste-Julien et al., 2011) couples the inference problem (i.e., learning
from data) to the decision-making algorithm for predictions (this is what the term ‘loss’ in ‘loss-
calibrated’ refers to, and it is different from the traditional ‘training loss’ in NMT). The principal
claim of the framework is that we can learn to make inferences that are better suited to minimise
the decision-making loss. Our notion of decision-making loss (rather, gain, as prefer to express
our preferences in terms of utility rather than loss functions) is the same as in minimum Bayes risk
decoding, that is, expected utility. Let h? denote the optimum decision from MBR:

h? = argmax
h∈Y
E[u(Y, h)|θ] (13)

3 Moreover, we can exploit scalable GP implementations such as sparse GPs (Snelson and Ghahramani, 2007) if we
need even larger hypothesis spaces.
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Figure 17: Performance of Bayesian Monte Carlo against Monte Carlo estimates of expected utility
as a function of sample size S (horizontal axis). We measure mean-squared error (vertical
axis) against a very robust estimate of expected utility obtained using 1,000 independent
samples. The blue curve is the error of MC using S samples, the orange curve is the error
of BMC using S samples.

loss-calibrated inference regularises the objective for parameter estimation with the so-called q-
gain function:

G(h?|λ) =

∫
q(θ|λ)E[u(Y, h?)|θ]dθ (14)

where q(θ) is an approximation to the model’s true posterior. Intuitively, this regulariser seeks pos-
terior inferences (captured by q(θ)) which lead to the MBR optimum accumulating high expected
gain. The total objective is as follows:

argmax
λ
Eq(θ|λ)[log p(y|x, θ)] − KL(q(θ|λ)||p(θ)) + G(h?|λ) (15)

In a Bayesian neural network, this q-gain can be estimated via, for example, Monte Carlo dropout
(Gal and Ghahramani, 2016), which is the technique we investigate. The gain function (14) is
intractable in a number of ways, requiring principled and efficient approximations. We now discuss
how we approach these approximations.

Methodology. Let’s start with the intractable posterior expectation. Suppose we know the op-
timum decision h?, assessing the gain function still requires an intractable expectation: average
expected utility E[u(Y, h?)|θ] across all possible assignments of the model parameters θ. There
are infinitely many possible assignments for θ, but we can use a finite-time unbiased estimate, for
example by performing K stochastic forward passes with MC dropout:

G(h?|λ)
MC
≈

1
K

K∑
k=1

E[u(Y, h?)|θ(k)] . (16)

Next, we address the intractable expected utility. Suppose we know the optimum decision h?

and have a specific assignment of the model parameters θ(s), for example, in one of the forward
passes of MC dropout. It remains intractable to assess the expected utility of h?, as we had already
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discussed when we introduced MBR. The same solution applies here, we obtain a Monte Carlo
estimate using S samples from the NMT component:

E[u(Y, h?)|θ(k)]
MC
≈

1
S

S∑
s=1

u(y(s), h?) where y(s) ∼ pY |X(·|x, θ(k)) . (17)

Finally, let’s turn to the intractable search. Even though we can approximate expectations as shown
above (both under a given assignment of θ and under the posterior distribution of the Bayesian
NMT model), we cannot actually solve the search for the optimum h?. Instead, we rely on an
extension of our sampling-based approximation from (Eikema and Aziz, 2020). This extension,
approximates MBR not only under a single NMT model (one assignment of θ) but under K sampled
NMT models (K assignments of θ, simulated in practice via MC dropout). We call this Q-MBR, to
reflect the fact that this is approximation to the MBR solution under the variational approximation
of a Bayesian NMT model:

h? ≈ arg max
h

1
K

K∑
k=1

1
S

S∑
s=1

u(y(s), h?) (18)

for candidates we use the unique translations found in K × S ancestral samples from the Bayesian
NMT model. Combining this with other findings of ours (e.g., that beam search and nucleus
sampling outputs make better candidates, and that BMC can lead to faster convergence of estim-
ates) is left for future work.

Data and models. So far we only experimented with IWSLT14 German-English data (Cettolo
et al., 2014). We have 153326 training data points, 6969 validation pairs, and a test set with a
total of 6750 pairs of sequences. We have tokenised and BPE preprocessed (Sennrich et al., 2016)
our data with 3200 operations per language. The following results are for German into English.
For this investigation, we use chrF (Popović, 2015) as utility. The main motivation for using
chrF, apart from the low computational cost, is that it is designed to perform well on the sentence
level. Modern sentence-level utilities will be used in future work. We compare different decoding
methods: MBR, greedy decoding, and beam search, and report different quality metrics to ensure
that our results are consistent and robust. For chrF3 and BLEU4 use the sacrebleu package (Post,
2018). There are a number of objectives possible: a baseline, which is simply Transformer NMT
(Vaswani et al., 2017), we build upon JoeyNMT (Kreutzer et al., 2019), a Bayesian extension of
NMT (BNMT) via MC dropout (Xiao et al., 2019), and loss-calibrated versions of both approaches.
First, we look into loss calibration without Bayesian estimation.

Findings. Our results in Table 2 suggest that calibration towards a decision rule does lead to
improvements across decoders. Contrary to our expectation, the MBR decoder benefited less, even
though the gain function was based on it. We attribute this to the relatively small sample size
we used (S = 10). Loss calibration affects the entropy of the output distributions, reducing it,
which has an impact (even if indirect) on all decoders. Bayesian estimation for this dataset is in
fact quite effective, as the BNMT results show. Once again, the Q-MBR decoder is the one to
benefit less, given the computation budget invested (K = 10, S = 10). Finally, loss-calibrated
BNMT did not improve on BNMT. We speculate this is due to compounding approximation errors
(in loss calibration and in Bayesian estimation). Loss calibration of the NMT baseline seems a
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Method Decoding chrF BEER BLEU

NMT MBR 47.0 0.67 23.4
Greedy 47.7 0.67 25.2
Beam 48.5 0.68 26.4

Loss-calibrated NMT MBR 47.2 0.67 24.8
Greedy 49.4 0.69 28.4
Beam 49.9 0.69 29.2

BNMT Q-MBR 50.7 0.69 26.9
Greedy 52.1 0.7 30.3
Beam 52.7 0.70 31.2

Loss-calibrated BNMT Q-MBR 49.7 0.68 26.2
Greedy 51.5 0.70 30.1
Beam 52.2 0.70 31.1

Table 2: Effects of Bayesian estimation and loss-calibration on Transformer NMT for IWSLT14
German-English (test results).

promising direction moving forward. A complete comparison to MLE alternatives strategies such
as minimum risk training (MRT; Shen et al., 2016) and other forms of reinforcement learning
(Kreutzer et al., 2017) is left for furture work.

5 Conclusion

This deliverable has reported the work conducted within WP3 on learning structural models, in
particular, during the second half of the project. In task 3.1, we probed NMT models to better
understand their design, training and generation, in particular, under the lens of the more classic
SMT pipeline, leading to concrete recommendations for training objectives and data augmenta-
tion. In task 3.2, we have continued to develop machine learning techniques for training deep
neural network models whose internal representations are sparse and retain inductive biases typ-
ical of discrete and possibly combinatorial structure, we have applied this to compress NMT en-
coders leading to better and more interpretable models. We have also continued to make parameter
efficient use of document-level context by exploiting latent document-informed representations.
In task 3.3, we continued to exploit the consequences of the probabilistic formulation of NMT
models, with algorithmic advances in decoding and training. In all three fronts there is room
for improvement and countless opportunities for original work, which thanks to GoURMET our
research groups are well-positioned to develop.

A summary of our research output, in the form of conference publications, MSc theses, pre-prints
under review, and open-source software and data can be found in Figure 18.
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Conference Papers Main Task

Bastings et al. (2019), Eikema and Aziz (2019) 3.2
Pelsmaeker and Aziz (2020), Correia et al. (2020) 3.2
Zheng et al. (2020) , Lopes et al. (2020), Dobreva et al. (2020) 3.2
Eikema and Aziz (2020) 3.3
Voita et al. (2021a), Voita et al. (2021b) 3.1
Wang et al. (2021), Zhang et al. (2021) 3.2
Farinhas et al. (2022) 3.2

Pre-prints Main Task

Eikema and Aziz (2021) [under review] 3.3

Theses Main Task

van Stigt (2019), Murady (2020) 3.2
Bortych (2021) 3.3

Software and Data Main Task

Alignment models 3.1
https://github.com/Roxot/m-to-n-alignments
Deep latent language models 3.2
https://github.com/tom-pelsmaeker/deep-generative-lm
Sparse approximations to binary variables 3.2
https://github.com/bastings/interpretable predictions

Language models with latent syntax 3.2
https://github.com/daandouwe/thesis

Deep latent translation models 3.2
https://github.com/Roxot/AEVNMT.pt

Contrastive test sets for document-level machine translation 3.2
https://github.com/rbawden/Large-contrastive-pronoun-testset-EN-FR

Training data for document-level machine translation 3.2
https://github.com/radidd/Doc-substructure-NMT
Bayesian data analysis of NMT models 3.3
https://github.com/probabll/bda-nmt
Constrained optimisation for torch 3.*
https://github.com/EelcovdW/pytorch-constrained-opt.git
Probabilistic modules for torch 3.*
https://github.com/probabll/dgm.pt

Probability distributions for torch 3.*
https://github.com/probabll/dists.pt

Minimum Bayes risk decoding for NMT 3.3
https://github.com/Roxot/mbr-nmt

Figure 18: Summary of research output.
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itors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 3637–3647. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/gordon-rodriguez20a.html.

Alex Graves. Sequence transduction with recurrent neural networks. In ICML Workshop on Rep-
resentation Learning, volume abs/1211.3711, 2012.

Robert M Gray. Entropy and information theory. Springer Science & Business Media, 2011.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. Non-
autoregressive neural machine translation. In International Conference on Learning Repres-
entations, 2018. URL https://openreview.net/forum?id=B1l8BtlCb.

Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan Pino, Guillaume Lample, Philipp Koehn,
Vishrav Chaudhary, and Marc’Aurelio Ranzato. The FLORES evaluation datasets for low-
resource machine translation: Nepali–English and Sinhala–English. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6098–
6111, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1632. URL https://aclanthology.org/D19-1632.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn. Scalable modified
Kneser-Ney language model estimation. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages 690–696, Sofia,
Bulgaria, August 2013. Association for Computational Linguistics. URL https://aclanthology.
org/P13-2121.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. Advances in neural
information processing systems, 28, 2015.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rygGQyrFvH.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-Softmax.
In International Conference on Learning Representations, 2017.

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang, Kenneth
Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay
Bogoychev, André F. T. Martins, and Alexandra Birch. Marian: Fast neural machine transla-
tion in C++. In Proceedings of ACL 2018, System Demonstrations, pages 116–121, Melbourne,
Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-4020.
URL https://aclanthology.org/P18-4020.

page 34 of 41

https://aclanthology.org/P96-1024
https://aclanthology.org/P96-1024
https://proceedings.mlr.press/v119/gordon-rodriguez20a.html
https://openreview.net/forum?id=B1l8BtlCb
https://aclanthology.org/D19-1632
https://aclanthology.org/P13-2121
https://aclanthology.org/P13-2121
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://aclanthology.org/P18-4020


GoURMET H2020–825299 D3.2 GoURMET Final report on learning structural models

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages 1317–1327,
Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/

D16-1139. URL https://aclanthology.org/D16-1139.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In Yoshua Bengio
and Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http:
//arxiv.org/abs/1312.6114.

Philipp Koehn and Rebecca Knowles. Six challenges for neural machine translation. In Pro-
ceedings of the First Workshop on Neural Machine Translation, pages 28–39, Vancouver, Au-
gust 2017. Association for Computational Linguistics. doi: 10.18653/v1/W17-3204. URL
https://aclanthology.org/W17-3204.

Julia Kreutzer, Artem Sokolov, and Stefan Riezler. Bandit structured prediction for neural
sequence-to-sequence learning. In Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pages 1503–1513, Vancouver,
Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1138.
URL https://aclanthology.org/P17-1138.

Julia Kreutzer, Jasmijn Bastings, and Stefan Riezler. Joey NMT: A minimalist NMT toolkit
for novices. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages 109–114, Hong Kong, China, November
2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-3019. URL https:
//aclanthology.org/D19-3019.

Shankar Kumar and William Byrne. Minimum Bayes-risk word alignments of bilingual texts. In
Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2002), pages 140–147. Association for Computational Linguistics, July 2002. doi:
10.3115/1118693.1118712. URL https://aclanthology.org/W02-1019.

Shankar Kumar and William Byrne. Minimum Bayes-risk decoding for statistical machine trans-
lation. In Proceedings of the Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics: HLT-NAACL 2004, pages 169–176,
Boston, Massachusetts, USA, May 2 - May 7 2004. Association for Computational Linguistics.
URL https://aclanthology.org/N04-1022.

Simon Lacoste-Julien, Ferenc Huszár, and Zoubin Ghahramani. Approximate inference for the
loss-calibrated bayesian. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 416–424. JMLR Workshop and Conference Proceedings, 2011.

Alon Lavie and Abhaya Agarwal. METEOR: An automatic metric for MT evaluation with high
levels of correlation with human judgments. In Proceedings of the Second Workshop on Statist-
ical Machine Translation, pages 228–231, Prague, Czech Republic, June 2007. Association for
Computational Linguistics. URL https://aclanthology.org/W07-0734.

Angeliki Lazaridou and Marco Baroni. Emergent multi-agent communication in the deep learning
era. preprint arXiv:2006.02419, 2020.

page 35 of 41

https://aclanthology.org/D16-1139
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://aclanthology.org/W17-3204
https://aclanthology.org/P17-1138
https://aclanthology.org/D19-3019
https://aclanthology.org/D19-3019
https://aclanthology.org/W02-1019
https://aclanthology.org/N04-1022
https://aclanthology.org/W07-0734


GoURMET H2020–825299 D3.2 GoURMET Final report on learning structural models

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. Available online:
<http://yann.lecun.com/exdb/mnist>, 2010.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 4582–4597, Online, August 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.acl-long.353. URL https://aclanthology.org/2021.acl-long.353.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational
Linguistics. URL https://aclanthology.org/W04-1013.

Peter J. Liu*, Mohammad Saleh*, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and
Noam Shazeer. Generating wikipedia by summarizing long sequences. In International Confer-
ence on Learning Representations, 2018. URL https://openreview.net/forum?id=Hyg0vbWC-.

António Lopes, M. Amin Farajian, Rachel Bawden, Michael Zhang, and André T. Martins.
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