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Abstract

In this deliverable we describe the research of WP2 (Modelling Morphological Structure) in the
second half of the GoURMET project. The idea of this work package was to understand how
the morphological structure of words could be best exploited to improve low-resource machine
translation. The research consisted of four pieces of work: (i) we examined how word-level lin-
guistic annotation can be employed on the target-side, in order to improve MT.; (ii) We developed
a pipeline to reproduce state-of-the-art morphological segmentation and lemmatisation, which we
release as open-source; (iii) We studied the effect of different segmentation algorithms on the trans-
lation of agglutinative languages; and (iv) we examined how measures of morphological typology
could be used to predict difficulty in MT.
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1 Introduction

This deliverable describes the work done in WP2 (Modelling Morphological Structure) in the
second half of the GoURMET project.

From the grant agreement, the aim of this work package is as follows:

The purpose of this work package is to develop methods for representing words within neural
machine translation systems. The techniques developed in this work package will specifically
target the low resource setting. WP2 has three main goals:

• Develop methods which rely on prior knowledge to induce models of linguistically-plausible
morphological structure (Task 2.1)

• Develop methods to induce alignments and morphological structure jointly (Task 2.2)

• Develop translation models which induce implicit word structure as latent features (Task
2.3)

We describe the work under each of the tasks in the following sections. In Task 2.1 we carried out
a study of word-level linguistic annotation in the target language (Section 2.1) as well as devel-
oping a pipeline to reproduce state-of-the-art morphological analysis and lemmatisation (Section
2.2). For Task 2.2 we investigated how different subword strategies coped with translation between
agglutinative languages (Section 3.1) whilst for Task 2.3 we looked at how measures of morpho-
logical typologies could be used to predict difficulty in MT (Section 4.1).

2 Linguistically informed models of morphology

2.1 Word-level linguistic annotations

In under-resourced scenarios, the use of additional information in the form of linguistic annota-
tions at the word level (such as part-of-speech, morphological or syntactic tags) can improve neural
machine translation (NMT) performance (Sennrich and Haddow, 2016; Nadejde et al., 2017). Lin-
guistic annotations may be integrated in the source language (SL), where they help the model to
produce more accurate SL representations (Sennrich and Haddow, 2016); or in the target language
(TL), where their addition involves producing probability distributions for both TL words and TL
linguistic annotations (Garcı́a-Martı́nez et al., 2016).

We previously conducted an exhaustive study about the effect of word-level linguistic annota-
tions in under-resourced NMT using part-of-speech (POS) tags and morpho-syntactic description
(MSD) tags in both the SL and the TL (Sánchez-Cartagena et al., 2020, see also Sect 2.2 of deliv-
erable D2.1). In that study, we simply interleaved (Nadejde et al., 2017) linguistic annotation tags
in the input and output streams. Our results showed that, overall, in the SL MSD tags are a better
choice than POS tags, whereas in the TL POS tags outperform MSD tags. Apparently, learning the
additional correlations needed to produce MSD tags in the TL is more difficult than just learning
the part-of-speech.

In the piece of work being presented in this deliverable, we delve further into our previous study to
shed light on the contradictory evidence found in the literature (Wagner, 2017; Feng et al., 2019)
as regards the best way of combining the generation of linguistic annotations and surface forms
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in the TL. On the one hand, as in the aforementioned interleaving approach, the generation of
a TL surface form can be explicitly conditioned on its corresponding tag. In this way, TL tags
and surface forms are generated in alternate time steps and the probability of a TL sentence is
factorized as follows, being y the sequence of surface forms and t the corresponding sequence of
linguistic tags:

|y|∏
i=1

p(yi|t1..i, y1..i−1, x; λw) · p(ti|t1..i−1, y1..i−1, x; λt) (1)

On the other hand, the generation of linguistic tags could be used to enrich the representations from
which the surface forms are generated, thus avoiding the generation of linguistic tags at decoding
time (Garcı́a-Martı́nez et al., 2016). In this approach, the probabilities of TL surface forms and
linguistic tags are conditionally independent, and the effect of the TL tags is achieved via parameter
sharing. This approach is usually referred to as multi-task learning (MTL) in the literature, since
the probability of a TL sentence is factorized as follows, being y the sequence of surface forms and
t the corresponding sequence of linguistic tags:

|y|∏
i=1

p(yi|y1..i−1, x; λw) ·
|y|∏

i=1

p(ti|y1..i−1, x; λt)/λw ∩ λt , ∅ (2)

In both approaches, the training objective is usually the categorical cross-entropy loss. Hence, the
training objective for interleaving becomes is the following, where y the gold-standrard sequence
of surface forms and t its corresponding sequence of linguistic tags:

|y|∑
i=1

log p(yi|t1..i, y1..i−1, x; λw) + log p(ti|t1..i−1, y1..i−1, x; λt) (3)

Similarly, the training objective for MTL is:

|y|∑
i=1

log p(yi|y1..i−1, x; λw) +

|y|∑
i=1

log p(ti|y1..i−1, x; λt) (4)

Moreover, for each of the two approaches, there are multiple potential strategies for sharing the
network parameters between the two tasks, and most of them remain unexplored. For the alternate
generation approach, the way of sharing parameters commonly found in the literature (Sánchez-
Cartagena et al., 2020) is using exactly the same set of parameters (i.e. exactly the same NMT
system) for both outputs. However, since it is clear that, for a certain time step, the system must
emit either a linguistic tag or a surface form, mixing them in the same probability distribution
(generated by a softmax operation) does not seem to be the most appropriate way of modelling the
sequence generation. One could split the last linear layer of the model, and use a different one for
each type of output. This separation of parameters could be further extended to previous layers,
and even to the full set of decoder parameters.

For the so-called MTL approach, there are also multiple ways of sharing the parameters. In order
to share all parameters, one could train the system as if it was a one-to-many multilingual sys-
tem (Johnson et al., 2017), where the linguistic tags are regarded as one of the target languages.
Another option, as proposed by Garcı́a-Martı́nez et al. (2016), is to emit both the surface form and
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the linguistic tag from a common representation layer at each time step. This common represent-
ation is usually the output of the network before the last linear layer; it can be however further
reduced to build a system with an independent decoder for each task.

With the aim of assessing the performance of the approaches and parameter sharing strategies that
have just been described, we carried out a set of experiments with well-known low-resource data-
sets for Korean–English and German–Upper Sorbian. We also trained English–German systems
with decreasing amounts of training data. Preliminary results for these experiments are described
next.

In line with our previous findings (Sánchez-Cartagena et al., 2020, Sec. 6), the results suggest
that the additional correlations that need to be learned in systems with alternate generation of
tags and surface forms increase data sparseness and harm translation quality when training data is
scarce (around 1 million words per language). In these scenarios, MTL seems to be a more robust
alternative. MTL is also more robust against errors in the linguistic annotation, likely to happen
in under-resourced languages. On the contrary, when the training corpus size grows, interleaving
generally outperforms MTL.

Concerning the different parameter sharing strategies evaluated, sharing all the parameters seems
to be the best strategy when tags and surface forms are generated in an interleaved way. In the
MTL approaches, using different linear layers, as proposed by Garcı́a-Martı́nez et al. (2016), is the
most effective strategy. However, it requires an appropriate down-weighting of the linguistic tag
loss with regard to the surface form loss. Using independent decoders was the least performing
sharing strategy for both approaches.

2.2 Lemmatisation and Morphological Tagging

This section reports on an engineering effort to reproduce state-of-the-art systems for morpholo-
gical lemmatisation and tagging based on data from the CONLL/SIGMORPHON 2019 shared task
2 (McCarthy et al., 2019).

State-of-the-art tagging with UDPipe2. Designed and implemented by Straka et al. (2019) at
Charles University, the second version of the UDPipe pipeline (Straka, 2018) has shown excel-
lent performance in several competitions. It consists of an entirely modular system (see Figure
1), processing various forms of pre-trained (e.g., fasttext (Bojanowski et al., 2016)) and trainable
word embeddings (e.g., regular embedding layers and character-level bidirectional GRU encoders)
via a residual RNN, before classifying a tokens’ morphological tag set and lemma edit script.
Ultimately, this UDPipe2 was 1 of 3 winners at CONLL 2018’s shared task, and 1 of 2 at CON-
LL/SIGMORPHON 2019 shared task 2 (McCarthy et al., 2019), and the winner at the EvaLatin
2020 shared task (Sprugnoli et al., 2020).

Reimplementation. We are motivated by the need for accurate morphological analysis for mul-
tiple languages and the fact that we did not have access to a state-of-the-art system, such as UDPipe
or UDPipe 2 (Straka, 2018; Straka et al., 2019). Besides, since the CONLL/SIGMORPHON 2019
shared task 2 (McCarthy et al., 2019) took place, the universal dependencies (UD) treebanks have
seen 6 new releases,1 with improvements and extensions made to many of the used corpora. To use

1 https://universaldependencies.org
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Figure 1: UDPipe2’s pipeline. Image from (Straka et al., 2019).

these datasets instead, we have converted UD2.9 to carry UniMorph tags (McCarthy et al., 2018)
using the ud-compatibility repo.2 We strived for a well designed pipeline that employs modern
components and delivers reasonably fast tagging performance (measured in tokens per second)
across a large set of languages. See Table 1 for test results of our reimplementation. The open-
source code is available on https://github.com/IvoOVerhoeven/morph tag lemmatize and it will
continue to be improved.

Language Lemma Morphology Tokens/sec

acc. ↑ Lev. ↓ set acc. ↑ tag micro F1 ↑ tag macro F1 ↑

Arabic 0.93 0.21 0.90 0.96 0.85 2313.08
Czech 0.98 0.03 0.92 0.98 0.90 2930.30
Dutch 0.94 0.12 0.95 0.97 0.93 3222.71
English 0.97 0.05 0.92 0.96 0.90 2976.70
Finnish 0.82 0.44 0.81 0.92 0.62 2632.62
French 0.98 0.04 0.92 0.97 0.87 3715.83
Russian 0.97 0.06 0.92 0.97 0.88 2759.40
Turkish 0.91 0.19 0.77 0.89 0.58 1828.43

Table 1: Performance of our taggers across languages.

Potential. In an ongoing study, these taggers are used to annotate the output of NMT models
througout training. Based on whether the output is inflected as expected (by comparison of its
morphological features—as predicted by our taggers—and those of the reference), we guide a cur-
riculum of training examples aimed at improving a standard NMT system along the morphological

2 https://github.com/unimorph/ud-compatibility
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inflection axis. Given the current relevance of multilingual pre-trained architectures, the ability to
inform the NMT system through its curriculum, rather than through changes to its architecture, is
particularly appealing, as it is compatible with the pre-train then fine-tune approach (Tang et al.,
2021). This project started in GoURMET’s last semester in response to the success of massive
multilingual pre-trained models, and we will continue to pursue this direction.

3 Jointly learning alignments and morphology

3.1 Investigating Subword Segmentation Strategies and Agglutinative Languages

3.1.1 Introduction

The current state of machine translation is heavily English-centric, which means improvements
yielded by certain methods towards the type of morphology English exhibits (i.e. low morpholo-
gical complexity and fusional), might not transfer when either the source and/or target exhibits a
different type of morphology. The more morphologically rich a language is, the greater the data
sparsity problem becomes for that language, and by extension, the subword choice or handling
may become more imperative. Agglutinative languages are those where words can be typically
composed of several morphemes concatenated together to form one word. There has been little
research into machine translation between agglutinative languages (as opposed to MT between
agglutinative languages and English). For this reason, we decided to test recently proposed seg-
mentation methods which claimed to improve on BPE (Sennrich et al., 2016). We were particularly
interested in a new method for finding the optimal merge count for BPE (Xu et al., 2021) – VOLT
(vocabulary learning via optimal transport).

3.1.2 Experiments

We decided to compare the following methods which deal with subword choice/regularisation, and
see whether the gains are still present in a low-resource agglutinative–agglutinative setting. These
methods are diverse in their approach:

• Conventional BPE baseline (Sennrich et al., 2016) with merge count of 2k. The motivation
for this merge choice was as recommended by Ding et al. (2019) for a low-resource scenario.

• BPE Dropout (Provilkov et al., 2020). A regularisation method simple to implement, which
they claim works best in a LR scenario. Essentially, when applying the BPE merge rules,
there is a dropout probability (p = 0.1) of the rule not being applied. This dropout is
applied on the fly, therefore, a sentence may be segmented multiple different ways throughout
training. We set the same merge count as conventional BPE at 2k.

• Vocabulary Learning via Optimal Transport (VOLT) (Xu et al., 2021). An entropy and in-
formation theory based method that aims to select the best BPE merge/vocab size, using a
metric the authors define as ‘Marginal Utility of Vocabularization’. VOLT is described in
more detail below.
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All models were transformers3 (Vaswani et al., 2017) trained using the fairseq toolkit (Ott et al.,
2019).

Language Pairs of Interest We decided to experiment with languages from a diverse range of
families. The following agglutinative language pairs are of natural interest whether for geographic,
political or cultural reasons:

• Uralic: Finnish–Hungarian and Estonian–Hungarian.

• Turkic: Turkish–Kazakh.

• Dravidian: Tamil–Telugu and Tamil–Malayalam

• Bantu: Swahili–Xhosa.

We also decided to look at each of the languages paired with English, as this would be closer to
previous work where English has nearly always been either source or target. Our data setup was to
use 200k sentences from the multilingual JW300 corpus (Agic and Vulic, 2019). For development
and test set, we used FLORES (Goyal et al., 2021).

VOLT The main motivation of VOLT (Xu et al., 2021) was to find the best vocabulary/subword
segmentation of a training corpus for machine translation, without having to do an expensive hy-
perparameter search (on a parameter such as number of BPE-merges), which is costly in terms of
computational resources to train the neural models. They define a metric called “Marginal Utility
of Vocabularization” (MUV) as the negative derivative of entropy (of the training corpus, both
source and target) with respect to vocabulary size, and aim to maximise this measure using an
Optimal Transport technique.

We will use the same notation as that of Xu et al. (2021) throughout our discussion. VOLT works
by iterating through sets of different sized vocabularies VS[t−1], VS[t], where S = {k, 2 · k, ..., (t −
1) · k, ...} is an incremental integer sequence with some step size k. Briefly, it proposes to calculate
the marginal entropy between each consecutive set, and chooses the vocabulary size that yields the
largest entropy difference, using optimal transport4. After determining which subwords should be
in the vocabulary, VOLT uses the same greedy approach of BPE to merge individual units together.

The authors of VOLT tested their method on a large variety of language pairs, including some
low-resource settings. We had hoped to replicate their promising results, although this turned out
differently than expected.

We used the implmentation of VOLT provided by the authors. In order to obtain our VOLT vocab-
ulary, we performed the following; after tokenising the datasets, we learnt the joint-BPE up to
10,000 merges. We set k to be 400 (the vocabulary step size) i.e. our S = {400, 2 · 400, ..., (t − 1) ·
k, ..., 10, 000}. After the desired vocabulary size was chosen, we used those merge rules to segment
the data.
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Figure 2: sacreBLEU scores for different subword segmentation strategies on the English language
pairs: BPE 2k (blue), BPE dropout 2k (orange) and VOLT (green). The crosses mark the
BPE merge size chosen by VOLT, for easy comparison to the baselines (2000).
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Figure 3: sacreBLEU scores for different subword segmentation strategies on the non-English agglu-
tinative language pairs: BPE 2k (blue), BPE dropout 2k (orange) and VOLT (green). The
crosses mark the BPE merge size chosen by VOLT, for easy comparison to the baselines
(2000).

Results Results are presented on FLORES ‘devtest’ sets. We discluded our results for all lan-
guage pair involving Tamil as we could not get these to train; on further inspection of the training
data, we found that the JW300 corpora suffered from severe misalignment. We suspect the same
has happened with Kazakh (kk) language pairs.

We split our results between English and non-English language pairs for clarity (Figures 2 and 3)

3 transformer wmt de en
4 the derivation and details of which can be found in the paper
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respectively. We also evaluated our models using chrF (Popovic, 2015) and the pretrained metric
COMET (Rei et al., 2020), but as they correlated near perfectly with sacreBLEU (Post, 2018), we
only report sacreBLEU. The figures show that BPE dropout reliably outperforms BPE, thus con-
firming the results of Provilkov et al. (2020) that BPE dropout does indeed improve performance in
a low-resource setting. Furthermore, this pattern is consistent irrespective of whether the machine
translation is agglutinative to agglutinative or not.

However, VOLT rarely outperforms the BPE baseline (and bear in mind that this BPE had been
chosen without any expensive hyperparameter tuning, something Xu et al. (2021) claimed to solve
the need for). The VOLT authors chose a relatively high BPE merge count (around 8000 merges)
as their baseline, which we think is the reason for VOLTs apparent effectiveness in their work. We
followed the findings of Ding et al. (2019), where they recommend much lower BPE merge/vocab
size for low resource MT.

3.1.3 Concluding Remarks

Our key takeaway from this work is that BPE dropout performs remarkably well across a range
of scenarios, and should always be the baseline for any work on low-resource MT. Despite being
a best paper winner at ACL, VOLT (Xu et al., 2021) did not perform as expected, and our exper-
iments suggest that the baselines used in the paper were weak. During our experiments we also
found discrepancies between the reported model, and the implementation, which were confirmed
in correspondence with the authors.

4 Factors encoding latent features of morphology

4.1 Morphological Typology and Machine Translation

In MT research, languages are often labelled with terms like “fusional”, or “agglutinative”, without
giving a precise definition of those terms. Recent work on morphological typology (Payne, 2017)
has argued that morphological properties of language can be measured on a continuous scale, at the
segment level. We follow Payne (2017) in considering two indices: synthesis and fusion. Synthesis
is a measure of the number of morphemes per word, and ranges from from analytic (low synthesis)
to polysynthetic (high synthesis). Fusion measures the number of fusional morpheme joints (i.e.
joints where morphemes are fused rather than concatenated) and varies from highly fusional to
highly agglutinative.

Considering three different language pairs (English–Spanish, English–Turkish and English–German)
we develop tools to measure synthesis and fusion and so observe their effect on MT. In order to
measure synthesis, we need to use a morphological analyser, whereas we can measure fusion (for
Spanish) by using a part-of-speech tagger to identify verbs and a set of hand-written rules to cover
all verb paradigms.

Our analysis shows that a higher degree of synthesis or fusion usually corresponds to less accurate
translations in specific word types (studying nouns and verbs in English–Turkish, and verbs in
English–Spanish). At segment level, we show that synthesis and fusion-based predictors correlate
with MT quality across the 3 language pairs we studied (in both directions).
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This work was published at NAACL 2022 (Oncevay et al., 2022), so we refer the reader to the
paper for more details.

5 Conclusion

This deliverable has described several pieces of work addressing the problem of morphology in
MT. We have shown how to improve low-resource MT with word-level tags on the target, com-
pared unsupervised word splitting algorithms in the translation of agglutinative languages, demon-
strated how morphological typology can be used to analyse MT, and released a state-of-the-art
lemmatisation and morphological analysis toolkit.

Papers

The following papers have resulted from the work of WP3 in the second half of the project, i.e
since July 2020.

• Quantifying Synthesis and Fusion and their Impact on Machine Translation Oncevay et al.
(2022)

Code and Data Releases

• Morphological Tagging and Lemmatization in Context - code to reproduce state-of-the-
art morphological taggers and lemmatizers. https://github.com/IvoOVerhoeven/morph tag
lemmatize
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