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Machine Learning for NLP

How are you? Bawo ni? (Yoruba)

<Input> <Output>

Translation

What is your destination?Dialogue Can I book a flight?

74 yearsQuestion Answering How old is Trump?

Supervised learning: lots of labelled data <Input, Output> 

Unsupervised learning: lots of unlabelled data <Input> <Output>



Diversity of Languages



What is low-resource?
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Figure 2: Language Resource Distribution: The size of
the gradient circle represents the number of languages
in the class. The color spectrum VIBGYOR, repre-
sents the total speaker population size from low to high.
Bounding curves used to demonstrate covered points
by that language class.

2.2 Repositories
We focus our attention on the LDC catalog1 and
the ELRA Map2 for labeled datasets. Although
there are other repositories of data available on-
line, we found it practical to treat these organized
collections as a representation of labeled dataset
availability. This way, we look at standardized
datasets that have established data quality and con-
sistency, and which have been used in prior work.
There are strong efforts such as PanLex (Kamholz
et al., 2014), which is a large lexical database of
a wide range of languages being used for a lexi-
cal translator, and OLAC (Simons and Bird, 2003),
which contains a range of information for different
languages (e.g. text collections, audio recordings,
and dictionaries). However, keeping within the
purview of NLP datasets used in *CL conferences,
we decided to focus on popular repositories such
as the above-mentioned.

We look at Wikipedia pages as a measure for
unlabeled data resources. With regards to language
technologies, Wikipedia pages represent a strong
source of unsupervised training data which are
freely and easily accessible. In the perspective of
digital resource availability, they are a comprehen-
sive source of factual information and are accessed
by a large, diverse set of online users.

2.3 Language Classes
Figure 2 is a visualization of the taxonomy. We
find a set of distinct partitions which can be used

1https://catalog.ldc.upenn.edu/
2http://catalog.elra.info/en-us/

to categorize languages into 6 unique positions in
the language resource ‘race’:

0 - The Left-Behinds These languages have been
and are still ignored in the aspect of language tech-
nologies. With exceptionally limited resources, it
will be a monumentous, probably impossible effort
to lift them up in the digital space. Unsupervised
pre-training methods only make the ‘poor poorer’,
since there is virtually no unlabeled data to use.

1 - The Scraping-Bys With some amount of un-
labeled data, there is a possibility that they could
be in a better position in the ‘race’ in a matter of
years. However, this task will take a solid, orga-
nized movement that increases awareness about
these languages, and also sparks a strong effort to
collect labelled datasets for them, seeing as they
have almost none.

2 - The Hopefuls With light at the end of the tun-
nel, these languages still fight on with their gasping
breath. A small set of labeled datasets has been
collected for these languages, meaning that there
are researchers and language support communities
which strive to keep them alive in the digital world.
Promising NLP tools can be created for these lan-
guages a few years down the line.

3 - The Rising Stars Unsupervised pre-training
has been an energy boost for these languages. With
a strong web presence, there is a thriving cultural
community online for them. However, they have
been let down by insufficient efforts in labeled data
collection. With the right steps, these languages
can be very well off if they continue to ride the
‘pre-training’ wave.

4 - The Underdogs Powerful and capable, these
languages pack serious amounts of resource ‘fire-
power’. They have a large amount of unlabeled
data, comparable to those possessed by the win-
ners, and are only challenged by lesser amount of
labeled data. With dedicated NLP communities
conducting research on these languages, they have
the potential to become winners and enjoy the fruits
of ‘digital superiority’.

5 - The Winners Running strong and fast, these
languages have been in the lead for quite a while
now, some longer than others. With a dominant
online presence, there have been massive indus-
trial and government investments in the develop-
ment of resources and technologies for these lan-
guages. They are the quintessential rich-resource

The State and Fate of Linguistic Diversity and Inclusion in the NLP World  Joshi et al. 2020
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Class 5 Example Languages #Langs #Speakers % of Total Langs
0 Dahalo, Warlpiri, Popoloca, Wallisian, Bora 2191 1.2B 88.38%
1 Cherokee, Fijian, Greenlandic, Bhojpuri, Navajo 222 30M 5.49%
2 Zulu, Konkani, Lao, Maltese, Irish 19 5.7M 0.36%
3 Indonesian, Ukranian, Cebuano, Afrikaans, Hebrew 28 1.8B 4.42%
4 Russian, Hungarian, Vietnamese, Dutch, Korean 18 2.2B 1.07%
5 English, Spanish, German, Japanese, French 7 2.5B 0.28%

Table 1: Number of languages, number of speakers, and percentage of total languages for each language class.
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(d) Web

Figure 3: Plots of different available resources for different languages. Languages to the far right do not have a
representation in the resource category. Languages annotated are: Class 0-Dahalo (Dh), Wallisian(Wl); Class
1-Bhojpuri (Bh), Greenlandic (Gr); Class 2-Lao (La), Zulu (Zu); Class 3- Bengali (Bn), Indonesian (In);
Class 4- Korean (Ko), Italian (It); Class 5- English (En), Spanish (Es).

languages, reaping benefit from each state-of-the-
art NLP breakthrough.

Some more information about the taxonomy is
shown in Table 1. We also take 10 languages, and
annotate their positions in Figure 3.

2.4 Findings

On your marks As can be seen in Figure 3, the
Winners take pole position in all rankings, and
Class 0 languages remain ‘out of the race’ with
no representation in any resource. The Wikipedia
distribution seems to be more fair for classes 1, 2,
and 3 when compared to classes 4 and 5, whereas
the Web distribution has a clear disparity.

Talk ain’t cheap Looking at Table 1, we see that
Class 0 contains the largest section of languages
and represents 15% of all speakers across classes.
Although there is a large chunk of speakers which
converse with Class 5 languages, the lack of tech-
nological inclusion for different languages could
draw native speakers away from Class 0 languages
and towards Class 5, exacerbating the disparity.

3 Typology

Linguistic typology is a field which involves the
classification of languages based on their structural
and semantic properties. Large-scale efforts have
led to the creation of a database of typological

features (Dryer and Haspelmath, 2013). Such doc-
umentation becomes important as there are barely
any other classifications of similar scale. In the
context of NLP research, there has been work in-
dicating the effectiveness of injecting typological
information to guide the design of models (Ponti
et al., 2019). Also, transfer learning of resource-
rich to resource-poor languages have been shown
to work better if the respective languages contain
similar typological features (Pires et al., 2019). We
look at how skewed language resource availability
leads to an under-representation of certain typolog-
ical features, which may in turn cause zero-shot
inference models to fail on NLP tasks for certain
languages.

We look at the WALS data (Dryer and Haspel-
math, 2013), which contains typological features
for 2679 languages. There are a total of 192 typo-
logical features, with an average of 5.93 categories
per feature. We take the languages in classes 0, 1,
2, all of which have limited or no data resources
as compared to 3, 4, 5 and look at how many cat-
egories, across all features, exist in classes 0, 1,
2 but not 3, 4, 5. This comes to a total of 549
out of 1139 unique categories, with an average of
2.86 categories per feature being ignored. Typo-
logical features with the most and least ‘ignored’
categories are shown in Table 2.

To get an idea of what these typological ‘exclu-

What is low-resource?

Most languages are low-resource 
Almost all language pairs are low-resource



Low Resource MT

• Creating More Data 

• Monolingual Data 

• Multilingual Data 

• Model Centric Techniques 

• Research Community 



Low Resource MT

• Creating More Data 
• Monolingual Data 

• Multilingual Data 

• Model Centric Techniques 

• Research Community 



Data

• OPUS > 500 languages 

• Bible, GNOME 

• Paracrawl: large scale crawling, and internet archive 

• WikiMatrix: 85 lang, using sentence embeddings  

• JW300: 54k lang pairs

Bañón et al. 2020

Tiedemann et al. 2012

Schwenk et al. 2019

Agic and Vulic 2019



Data - Crawling
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Language Id

Document Alignment

Segment Alignment
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Translation Model Bilingual Lexicon

Multilingual Sentence  
Embeddings



Data - Crawling
Parallel Monolingual

CCAligned ParaCrawl v7.1 WikiMatrix OSCAR mC4

#langs audited / total 65 / 119 21 / 38 20 / 78 51 / 166 48 / 108
%langs audited 54.62% 55.26% 25.64% 30.72% 44.44%
#sents audited / total 8037 / 907M 2214 / 521M 1997 / 95M 3517 / 8.4B 5314 / 8.5B
%sents audited 0.00089% 0.00043% 0.00211% 0.00004% 0.00006%

m
ac

ro

C 29.25% 76.14% 23.74% 87.21% 72.40%
X 29.46% 19.17% 68.18% - -
WL 9.44% 3.43% 6.08% 6.26% 15.98%
NL 31.42% 1.13% 1.60% 6.54% 11.40%
offensive 0.01% 0.00% 0.00% 0.14% 0.06%
porn 5.30% 0.63% 0.00% 0.48% 0.36%

m
ic

ro

C 53.52% 83.00% 50.58% 98.72% 92.66%
X 32.25% 15.27% 47.10% - -
WL 3.60% 1.04% 1.35% 0.52% 2.33%
NL 10.53% 0.69% 0.94% 0.75% 5.01%
offensive 0.00% 0.00% 0.00% 0.18% 0.03%
porn 2.86% 0.33% 0.00% 1.63% 0.08%

#langs =0% C 7 0 1 7 0
#langs <50% C 44 4 19 11 9
#langs >50% NL 13 0 0 7 1
#langs >50% WL 1 0 0 3 4

Table 3: Averages of sentence-level annotations across datasets and selected languages. Macro-avg: Each language
is weighted equally in the aggregation, regardless of its size. Micro-avg: Each label is weighted by the fraction of
sentences for that language in the overall annotated corpus, i.e., the annotations for higher-represented languages
are upweighted, and annotations for lower-represented languages are downweighted. The bottom rows contain the
number of languages that have 0% sentences labeled C etc.

but the dataset also covers the smallest amount
of languages. The relatively low ratio of wrong
language samples in OSCAR may reflect the suc-
cess of line-level LangID filtering. These numbers
provide evidence that more research in improved
language identification could improve the overall
quality, especially with respect to nonlinguistic con-
tent.

Which languages got confused? The languages
that were confused were frequently related higher-
resource languages. However, there were also a
significant number of “out-of-model cousin” cases,
where languages not supported by the LangID
model ended up in a similar-seeming language. For
instance in mC4, much of the Shona (sn) corpus is
actually Kinyarwanda (rw) – and, peculiarly, much
of the Hawaiian (haw) is actually Twi (tw/ak).

Do low-resource languages have lower quality?
Low-resource datasets tend to have lower human-

judged quality, which we measure by comparing
size of corpora and ratio of correct sentences. The
Spearman rank correlation between quality (%C)
and size is positive in all cases. The trend is
strongest for mC4 (r = 0.66), and gradually de-
clines for CCAligned (r = 0.53), WikiMatrix
(r = 0.49), ParaCrawl (r = 0.43), and OSCAR
(r = 0.37). Figure 1 compares the number of sen-
tences for each language against the proportion of
correct sentences that we found during the audit.
We can see that not all high-resource languages
have high quality, in particular for CCAligned
(e.g. en-jv ID with 5%C, or en-tl XX with
13%C). For mid-resource languages (104–106 sen-
tences) the picture is rather inconclusive, with some
languages having high quality, and others hav-
ing extremely low quality, even within the same
datasets, e.g. for CCAligned en-ur PK (100%

Caswell et al 2021
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Where did __ from ? </s> Who __ I __ </s> <En> <En> Who am I ? </s> Where did I come from ? </s> 

Who am I ? </s> Where did I come from ? </s> <En> 

Who am I ? </s> <En> 

Transformer Encoder Transformer Decoder

ᐺ�΅�抑�Ҙ </s> <Ja>

<Ja> ᐺ�΅�抑�Ҙ </s> 

Transformer Encoder Transformer Decoder

 BB�ก෭�̶ </s> ͳ�BB��V!�<Ja> <Ja> ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> 

ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> <Ja> 

Transformer Encoder Transformer Decoder

Multilingual Denoising Pre-Training  (mBART) Fine-tuning on Machine Translation

ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> <Ja> 

Transformer Encoder Transformer Decoder

:HOO�WKHQ�����V! See you tomorrow .</s> <En>

<En> :HOO�WKHQ�����V! See you tomorrow .</s> 

Doc-MT

Sent-MT

Figure 1: Framework for our Multilingual Denoising Pre-training (left) and fine-tuning on downstream MT tasks
(right), where we use (1) sentence permutation (2) word-span masking as the injected noise. A special language id
token is added at both the encoder and decoder. One multilingual pre-trained model is used for all tasks.

Noise function Following Lewis et al. (2019),
we use two types of noise in g. We first remove
spans of text and replace them with a mask to-
ken. We mask 35% of the words in each instance
by random sampling a span length according to a
Poisson distribution (� = 3.5). We also permute
the order of sentences within each instance. The
decoder input is the original text with one posi-
tion offset. A language id symbol <LID> is used
as the initial token to predict the sentence. It is also
possible to use other noise types, such as those in
Lample et al. (2018c), but we leave the exploration
of the optimal noising strategy to future work.

Instance format For each instance of a batch,
we sample a language id symbol <LID>, and
we pack as many consecutive sentences as pos-
sible sampled from the corresponding corpus of
<LID>, until either it hits the document boundary
or reaches the 512 max token length. Sentences
in the instance are separated by the end of sen-
tence (</S>) token. Then, we append the selected
<LID> token to represent the end of this instance.
Pre-training at “multi-sentence” level enables us to
work on both sentence and document translation.

Optimization Our full model (including 25 lan-
guages) is trained on 256 Nvidia V100 GPUs
(32GB) for 500K steps. The total batch size
is around 128K tokens per GPU, matching
BART (Lewis et al., 2019) configuration. We use
the Adam optimizer (✏ = 1e�6, �2 = 0.98) and
linear learning rate decay scheduling. The total
training time was approximately 2.5 weeks. We
started the training with dropout 0.1 and reduced it
to 0.05 at 250K steps and 0 at 400K steps. All ex-
periments are done with Fairseq (Ott et al., 2019).

2.3 Pre-trained Models
To better measure the effects of different levels
of multilinguality during pre-training, we built a
range of models as follows:

• mBART25 We pre-train a model on all 25 lan-
guages, using the setting described in §2.2.

• mBART06 To explore the effect of pre-training
on related languages, we pretrain a model on a
subset of six European languages: Ro, It, Cs, Fr,
Es and En. For a fair comparison, we use ⇠ 1/4
of the mBART25 batch size, which allows our
model to have the same number of updates per
language during pre-training.

• mBART02 We pre-train bilingual models, us-
ing English and one other language for four
language pairs: En-De, En-Ro, En-It. We use a
batch size of ⇠ 1/12 of that in the mBART25.

• BART-En/Ro To help establish baseline per-
formance levels, we also train monolingual
BART models on the same En and Ro corpus
only.

• Random As additional baselines, we will also
include a comparison with a model randomly
initialized without pre-training for each trans-
lation task. Since the sizes of different down-
stream datasets vary, we always grid-search the
hyper-parameters (architecture, dropout, etc.) to
find the best non-pretrained configuration.

All models use the same vocabulary (§2.1). Not
all tokens will frequently occur in all pre-training
corpora, but later experiments show that this large
vocabulary can improve generalization in multilin-
gual settings even for unseen languages.

Monolingual Data - Pre-training
Use unlabelled <input> and/or <output> data, pre-train 
the model to predict the next or missing word

Multilingual denoising 
pre-training (mBART) 

Liu et al 2020

BERT, GPT2



Monolingual Data - Pre-training

Use labelled <input, output> data, fine-tune the 
model to predict the translation

Where did __ from ? </s> Who __ I __ </s> <En> <En> Who am I ? </s> Where did I come from ? </s> 
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Who am I ? </s> <En> 

Transformer Encoder Transformer Decoder

ᐺ�΅�抑�Ҙ </s> <Ja>

<Ja> ᐺ�΅�抑�Ҙ </s> 

Transformer Encoder Transformer Decoder

 BB�ก෭�̶ </s> ͳ�BB��V!�<Ja> <Ja> ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> 

ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> <Ja> 

Transformer Encoder Transformer Decoder

Multilingual Denoising Pre-Training  (mBART) Fine-tuning on Machine Translation

ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> <Ja> 

Transformer Encoder Transformer Decoder
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Figure 1: Framework for our Multilingual Denoising Pre-training (left) and fine-tuning on downstream MT tasks
(right), where we use (1) sentence permutation (2) word-span masking as the injected noise. A special language id
token is added at both the encoder and decoder. One multilingual pre-trained model is used for all tasks.

Noise function Following Lewis et al. (2019),
we use two types of noise in g. We first remove
spans of text and replace them with a mask to-
ken. We mask 35% of the words in each instance
by random sampling a span length according to a
Poisson distribution (� = 3.5). We also permute
the order of sentences within each instance. The
decoder input is the original text with one posi-
tion offset. A language id symbol <LID> is used
as the initial token to predict the sentence. It is also
possible to use other noise types, such as those in
Lample et al. (2018c), but we leave the exploration
of the optimal noising strategy to future work.

Instance format For each instance of a batch,
we sample a language id symbol <LID>, and
we pack as many consecutive sentences as pos-
sible sampled from the corresponding corpus of
<LID>, until either it hits the document boundary
or reaches the 512 max token length. Sentences
in the instance are separated by the end of sen-
tence (</S>) token. Then, we append the selected
<LID> token to represent the end of this instance.
Pre-training at “multi-sentence” level enables us to
work on both sentence and document translation.

Optimization Our full model (including 25 lan-
guages) is trained on 256 Nvidia V100 GPUs
(32GB) for 500K steps. The total batch size
is around 128K tokens per GPU, matching
BART (Lewis et al., 2019) configuration. We use
the Adam optimizer (✏ = 1e�6, �2 = 0.98) and
linear learning rate decay scheduling. The total
training time was approximately 2.5 weeks. We
started the training with dropout 0.1 and reduced it
to 0.05 at 250K steps and 0 at 400K steps. All ex-
periments are done with Fairseq (Ott et al., 2019).

2.3 Pre-trained Models
To better measure the effects of different levels
of multilinguality during pre-training, we built a
range of models as follows:

• mBART25 We pre-train a model on all 25 lan-
guages, using the setting described in §2.2.

• mBART06 To explore the effect of pre-training
on related languages, we pretrain a model on a
subset of six European languages: Ro, It, Cs, Fr,
Es and En. For a fair comparison, we use ⇠ 1/4
of the mBART25 batch size, which allows our
model to have the same number of updates per
language during pre-training.

• mBART02 We pre-train bilingual models, us-
ing English and one other language for four
language pairs: En-De, En-Ro, En-It. We use a
batch size of ⇠ 1/12 of that in the mBART25.

• BART-En/Ro To help establish baseline per-
formance levels, we also train monolingual
BART models on the same En and Ro corpus
only.

• Random As additional baselines, we will also
include a comparison with a model randomly
initialized without pre-training for each trans-
lation task. Since the sizes of different down-
stream datasets vary, we always grid-search the
hyper-parameters (architecture, dropout, etc.) to
find the best non-pretrained configuration.

All models use the same vocabulary (§2.1). Not
all tokens will frequently occur in all pre-training
corpora, but later experiments show that this large
vocabulary can improve generalization in multilin-
gual settings even for unseen languages.



Monolingual Data - Pre-training

Baziiotis et al 2020Language Model Prior

We regularize the TM, by using the LM as prior over the decoder

(hard) target

KL

࢟
predictions

(soft) labels

Cross-Entropy

𝒙, 𝒙, … , 𝒙𝑵 ,࢟ ,࢟ …,࢟
Translation

Model

Language
Model

L =
NX

t=1

� log ptm(yt|y<t,x)| {z }
translation

+ � Dkl(plm(yt|y<t) k ptm(yt|y<t,x))| {z }
prior

+ Easier than priors on neural network weights

+ The tm can overrule the lm when needed

+ The lm is not required during decoding

Baziotis et al. LM Prior for Low-Resource NMT EMNLP 2020 5 / 11



Monolingual Data - Synthetic

• back translation  

• use English->Yoruba system to translate English 

• Train Yoruba->English system on <Yoruba, English> 

• iterative translation - self learning 

• Train Yoruba->English, English->Yoruba, English-
>Yoruba etc. 

• Unsupervised MT  

Sennrich et al 2016

Hoang et al. 2018

Lample et al. 2018



Monolingual Data - Synthetic

• Data augmentation using LMs Arthaud et al 2021
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Cette centrale nucléaire menace d'exploser à tout moment !

This nuclear power plant could explode at any time!

Une centrale charbon produit une électricité carbonée.

A coal power plant produces carbon-intensive power.

user
=> s1 =

training
set

=> s2 = alignments

A coal power plant produces
carbon-intensive power.

s3 =

Une centrale nucléaire produit
une électricité carbonée.
A nuclear power plant produces
carbon-intensive power.

training
set

=> top matches =
    by context

That's a solar-powered ship.

They have called for subsidies
for cleaner electricity.

He's drinking apple juice.Sweden largely relies on
hydroelectric power.

augmented
data

...

This ____ power plant
could explode at any time!

masked
context=>

They threatened to drop a
thermonuclear bomb.

Figure 1: Contextual data augmentation applied to an example sentence

reference sentence for training. Next, we use an
alignment tool to replace the aligned source word
(e.g. charbon) in the selected sentence pair s2 with
the word nucléaire, providing a brand new sentence
pair s3 for the reference word nucléaire-nuclear.

Finding similar contexts The first step is to find
suitable sentences in which we can substitute w
and its translation. As in (Wu et al., 2018), we use
the BERT contextual language model (Devlin et al.,
2019) to provide a contextual representation of w
in stgt, noted v. This feature vector is taken from
the second-to-last layer of BERT (used to com-
pute vocabulary probabilities through a softmax
layer). Given the masked and bidirectional nature
of BERT, this contextual representation contains
information about the context surrounding w in stgt

with no prior knowledge of w required by BERT.
The advantage of this approach is that it means that
truly novel words can be data-augmented using this
technique with any pre-trained BERT model.

The context search consists in (i) extracting the
feature vector v for w in stgt, (ii) for each sen-
tence in the filtered training set, randomly selecting
a word u and computing its feature vector1 and
(iii) selecting the top k sentences based on the co-
sine similarity of these feature vectors with v.

This is shown in Figure 1 where 6 sentences have
been selected based on their feature vector similar-
ity to s1. These sentences are selected because the
context surrounding the random word chosen in
each of them is similar to the context surrounding
w in s1, which generally means the bold words
loosely correspond to adjectives describing power

1Comparing all positions in all sentences would lead to the
best results, but is inefficient. With sufficient training exam-
ples (as is the case here), randomly choosing a single position
in each sentence avoids having to to do all computations and
still provides varied contexts that can be tested.

plants. Using a masked model means that knowl-
edge of the meaning of w is not required, but only
understanding of the context in stgt. An additional
real use example is provided in Appendix B.

This process significantly differs from (Fadaee
et al., 2017), which iterates over the training set
to find sentences for which the language model
gives a high probability of the rare words appearing.
Moreover, by using feature vectors rather than raw
probability distributions (as in previous works), we
capture richer information about the surrounding
sentence than only which words could replace w.

Creation of new training examples The second
step is to substitute the randomly masked word
u—which is coal in our example—in the retained
sentence pair s2 with w in the target language and
its translation in the source language. In the tar-
get language, we simply replace u by w, but the
task is harder in the source language since we have
no prior information as to which word translates
to u, or which word translates to w to replace it
with. In our scenario, we assume that the trans-
lation in the source language of w, noted w0, is
known to us – for example, a human translator pro-
viding (ssrc, stgt) could identify w0 in ssrc. Having
no human translator for our experiments, we train
an alignment tool on the complete unfiltered train-
ing set and use it to select the words most often
aligned to each w from our evaluation words. A
different approach could be used in future work, by
training the alignment tool on the filtered training
set and then re-training it on reference sentences
as they are provided, removing the need for human
intervention or prior knowledge of w.

Once the translation w0 for w is established, we
have to determine which word or words in the
source sentence must be replaced by w0. This is
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Multilingual Data

Transfer Learning Multilingual Models

French -> English

Hausa -> English

English 
German 

Mandarin 
Arabic 
French 
Hausa

English 
German 

Mandarin 
Arabic 
French 
Hausa

Zoph et al. 2016 Johnson et al. 2016



Multilingual Data
Oncevay et al. 2020What languages to train together?

(a) SVCCA-53(US , LT ): SVCCA representations of Syntax and TED-53

(b) SVCCA-23(US , LW ): SVCCA representations of Syntax and WIT-23

(c) US : Syntax

(d) LT : NMT-learned from TED-53 (using factors)

Figure 2: (a) Clustering of TED-53 using the SVCCA-53 representations. At the left, we include the Elbow and
Silhouette criteria to define the number of clusters. For the former, it is not clear what is the value to choose,
whereas for the later we automatically select the highest peak at ten clusters. (b-d) Elbow method, silhouette
analysis and dendrograms for SVCCA-23(US ,LW ) with 30 additionally projected languages, US and LT .

With the last setting, we are interrogating whether
SVCCA is a useful method for rapidly increasing
the number of languages without retraining massive
models given new entries that require their NMT-
learned embeddings for clustering.

Similar to Tan et al. (2019), we use hierarchi-
cal agglomeration with average linkage and cosine
similarity. However, we choose a different criterion
for choosing the optimal number of clusters.

Selection of number of clusters. The Elbow cri-
terion has been suggested for this purpose (Tan
et al., 2019); however, as we can see in Figure 2,
it might be ambiguous. Thus, we propose using
a heuristic called Silhouette (Rousseeuw, 1987),

which returns a score in the [-1,1] range. A sample
cluster with a silhouette close to 1 indicates that it
is cohesive and well-separated. With the average
silhouette of all samples, we vary the number of
clusters, and look for the peak value above two.

Ranking settings. We focus on five low-resource
languages from TED-53: Bosnian (bos, Indo-
European/Balto-Slavic), Galician (glg, Indo-
European/Italic), Malay (zlm, Austronesian), Es-
tonian (est, Uralic) and Georgian (kat, Kartvelian).
They have between 5k and 13k translated sentences
with English, and we chose them as they achieved
the most significant improvement from the individ-
ual to the massive setting. We then identified the

Robust language representation:  
      World Atlas of Language Structure + language embedding
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Model Centric Techniques

• Model-agnostic meta-learning (MAML) for machine 
translation 
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Fr

(a) Transfer Learning (b) Multilingual Transfer Learning (c) Meta Learning

Figure 2: An intuitive il-
lustration in which we
use solid lines to repre-
sent the learning of ini-
tialization, and dashed
lines to show the path of
fine-tuning.

meta model ✓. It is possible to aggregate multiple
episodes of source tasks before updating ✓:

✓  ✓ � ⌘
0
X

k

r✓LD0
T k (✓0k),

where ⌘
0 is the meta learning rate.

Unlike a usual learning scenario, the resulting
model ✓0 from this meta-learning procedure is not
necessarily a good model on its own. It is however
a good starting point for training a good model us-
ing only a few steps of learning. In the context of
machine translation, this procedure can be under-
stood as finding the initialization of a neural ma-
chine translation system that could quickly adapt
to a new language pair by simulating such a fast
adaptation scenario using many high-resource lan-
guage pairs.

Meta-Gradient We use the following approxi-
mation property

H(x)v ⇡ r(x+ ⌫v)�r(x)
⌫

to approximate the meta-gradient:1

r✓LD0
(✓0) = r✓0LD0

(✓0)r✓(✓ � ⌘r✓LD(✓))

= r✓0LD0
(✓0)� ⌘r✓0LD0

(✓0)H✓(LD(✓))

⇡ r✓0LD0
(✓0)� ⌘

⌫


r✓LD(✓)

����
✓̂

�r✓LD(✓)

����
✓

�
,

where ⌫ is a small constant and

✓̂ = ✓ + ⌫r✓0LD0
(✓0).

In practice, we find that it is also possible to ignore
the second-order term, ending up with the follow-
ing simplified update rule:

r✓LD0
(✓0) ⇡ r✓0LD0

(✓0). (3)
1We omit the subscript k for simplicity.

Related Work: Multilingual Transfer Learning

The proposed MetaNMT differs from the existing
framework of multilingual translation (Lee et al.,
2016; Johnson et al., 2016; Gu et al., 2018b) or
transfer learning (Zoph et al., 2016). The latter can
be thought of as solving the following problem:

max
✓

Lmulti(✓) = Ek

2

4
X

(X,Y )2Dk

log p(Y |X; ✓)

3

5 ,

where Dk is the training set of the k-th task, or lan-
guage pair. The target low-resource language pair
could either be a part of joint training or be trained
separately starting from the solution ✓

0 found from
solving the above problem.

The major difference between the proposed
MetaNMT and these multilingual transfer ap-
proaches is that the latter do not consider how
learning happens with the target, low-resource lan-
guage pair. The former explicitly incorporates the
learning process within the framework by simulat-
ing it repeatedly in Eq. (2). As we will see later in
the experiments, this results in a substantial gap in
the final performance on the low-resource task.

Illustration In Fig. 2, we contrast transfer learn-
ing, multilingual learning and meta-learning us-
ing three source language pairs (Fr-En, Es-En and
Pt-En) and two target pairs (Ro-En and Lv-En).
Transfer learning trains an NMT system specifi-
cally for a source language pair (Es-En) and fine-
tunes the system for each target language pair (Ro-
En, Lv-En). Multilingual learning often trains a
single NMT system that can handle many different
language pairs (Fr-En, Pt-En, Es-En), which may
or may not include the target pairs (Ro-En, Lv-
En). If not, it finetunes the system for each target
pair, similarly to transfer learning. Both of these
however aim at directly solving the source tasks.
On the other hand, meta-learning trains the NMT
system to be useful for fine-tuning on various tasks
including the source and target tasks. This is done
by repeatedly simulating the learning process on

Gu et al. 2018



Model Centric Techniques

• Latent Variable Models Ataman et al. 2020Published as a conference paper at ICLR 2020

Figure 1: LMM for computing word representations while translating the sentence ‘... went home’
into Turkish (‘eve-(to)home gitti(he/she/it)went’). The character-level decoder is initialized with
the attentional vector hi computed by the attention mechanism using current context ci and the word
representation ti as in Luong & Manning (2016).

where prediction of the location (in Rd) and scale (in Rd
>0) from the word-level decoder hidden state

hi (which represents x and y<i) is performed by two dense layers, and the scale values are ensured
to be positive with the softplus (⇣) activation.2

Generation proceeds by then sampling a K-dimensional vector fi of sparse scalar features (see §3.2)
conditioned on the source x, the target prefix y<i, and the sampled lemma zi. We model sampling of
fi conditioned on zi in order to capture the insight that inflectional transformations typically depend
on the category of a lemma. Having sampled fi and zi, the representation of the ith target word is
computed by a transformation of zi and fi, i.e. ti = dense([zi, fi]; ✓comp).

As shown in Figure 1, our model generates each word character by character auto-regressively by
conditioning on the word representation ti predicted by the LMM, the current context ci, and the
previously generated characters following the hierarchical parameterization.3 See Algorithm 1 for
details on generation.

Input: model parameters ✓, latent lemma zi, latent morphological attributes fi, observed character
sequence hyi,1, . . . , yi,lii if training or placeholders if test, decoder state hi, and context
vector ci

Result: updated decoder hidden state, prediction (a word), probability of prediction (for loss)
initialization;
ti = dense([zi, fi]; ✓comp) ;
initialize char-rnn with a projection of [ti, ci];
for j < li and j < max do

compute output layer from char-rnn state ;
if training then

set prediction to observation yi,j ;
else

set prediction to argmax of output softmax layer ;
end
assess log-probability of prediction ;
update word-level RNN decoder with prediction;

end
Algorithm 1: Word generation: in training the word is observed, thus we only update the decoder
and assess the probability of the observation, in test, we use mean values of the distributions to
represent most likely values for z and f and populate predictions with beam-search.

2In practice, we sample zi via a reparameterization in terms of a fixed Gaussian, namely, zi = ui + ✏i � si
for ✏i ⇠ N (0, Id). This is known as the reparameterization trick (Kingma & Welling, 2013), which allows
back-propagation through stochastic units (Rezende et al., 2014).

3Formally, because the decoder is an RNN, we are also conditioning on z<i and f<i. We omit this depen-
dence to avoid clutter.

4



Research Community

Conference on Machine Translation (WMT): news shared task

Finnish 2015-2018
Romanian 2016
Latvian 2017
Estonian 2018
Turkish 2016-2018
Kazakh 2019
Gujarathi 2019
Tamil 2020

Inuktitut 2020
Pashto 2020
Khmer 2020



Research Community

• LoResMT 

• Workshop for Asian Translation 

• African NLP 

• Masekane  
    https://github.com/masakhane-io/masakhane-mt/blob/master/MT4LRL.md  

• Gourmet!



Summary

• Find, Clean, Create Data 

• Use all available resources:  

• monolingual 

• multilingual 

• Better learning 

• Build community interest and capability!  
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