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Abstract

In this deliverable for the GoURMET project we describe the work done in Workpackage 4: Trans-
fer Learning, which focuses on improving news translation for low-resource languages by exploit-
ing alternative data resources. The workpackage consists of three main tasks: Learning from
Multilingual Data, Learning from Monolingual Corpora and Learning from Lexical Resources.
We report on the work already carried out and our plans for the remainder of the project.
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1 Introduction

The GoURMET project aims to develop systems to automatically translate news articles between
English and low-resource languages spoken in regions of the world that are of interest to inter-
national multi-lingual broadcasters such as BBC and Deutsche Welle. Corpora of parallel text
are the most important resource used to build high-quality machine translation systems, but for
low-resource languages, by definition, this data is scarce. The little parallel data available often
consists of government documents, religious texts or software manuals, which are out of the do-
main of news articles, or text scraped from web pages which is not only scarce but often of poor
quality due to the difficulty of automatically extracting parallel data from the web.

This workpackage aims at leveraging resources other than in-domain parallel text to improve the
quality of our machine translation systems using techniques generally known as Transfer Learning.
The workpackage is structured as three tasks, each focusing on a different type of data resource:

• T1: Learning from Multilingual Data
We exploit the similarity between languages to improve translation quality for one language
pair by leveraging data for related languages.

• T1: Learning from Monolingual Corpora
We leverage corpora of monolingual text, which is much more abundant than parallel text,
especially for the news domain.

• T1: Learning from Lexical Resources
We make use of curated linguistic resources such as large bilingual dictionaries.

The approaches investigated in these tasks can be combined with each other, as we demonstrated
for instance in our English-Gujarati system that combined multilingual and monolingual tech-
niques to achieve state-of-the-art results in the WMT 2019 News Translation shared task (Barrault
et al., 2019).

2 Task 1: Learning from Multilingual Data

Shared ancestry and cultural exchanges throughout history have resulted in extensive lexical and
syntactical similarities between many languages. More speculatively, but plausibly given the avail-
able evidence, the shared aspects of the human psychology and the human experience result in deep
structural and statistical similarities between all human languages. This is beneficial when design-
ing a machine translation system for a low-resource language pair because it makes it possible to
leverage resources for other languages, which help shape the inductive bias of the machine learning
approaches that we use in a direction that improves their ability to learn from the limited parallel
data available. This is the focus of this workpackage task.

In the GoURMET project initial proposal for task T4.1 we had mentioned baseline techniques
such as pre-training a machine translation system on a high-resource language pair and then fine-
tuning it on a low-resource pair, or jointly training on multiple language pairs using a language-
indicator tag to select the output language. We have successfully applied and improved upon these
techniques in the work done so far.
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We had also discussed carrying out an analysis of the type of knowledge being transferred between
languages (e.g. shallow transfer vs. interlingua semantic space), which we will reserve as further
work for the next part of the project, while in the work done so far we have carried out an analysis
of the quality of transfer between different languages in relation to their similarity.

2.1 Bridging Linguistic Typology and Multilingual Machine Translation with Multi-view
Language Representations

Recent surveys consider linguistic typology as a potential source of knowledge to support multilin-
gual natural language processing (NLP) tasks (O’Horan et al., 2016; Ponti et al., 2019). Linguistic
typology studies language variation in terms of their functional processes (Comrie, 1989). Sev-
eral typological knowledge bases (KB) have been crafted, from where we can extract categorical
language features1, such as in the lang2vec tool (Littell et al., 2017). Nevertheless, their sparsity
and reduced coverage present a challenge for an end-to-end integration into NLP algorithms. For
example, the World Atlas of Language Structure (WALS; Dryer and Haspelmath, 2013) encodes
143 features for 2,679 languages, but their mean coverage per language is barely around 14%.

Dense and data-driven language representations have emerged in response. They are computed
from multilingual settings of language modelling (Östling and Tiedemann, 2017) and neural ma-
chine translation (NMT) (Malaviya et al., 2017). However, the language diversity in the corpus-
based representations is limited. The language coverage could be broadened with other know-
ledge, such as that encoded in WALS, to distinguish even more language properties. Therefore,
to obtain the best of both views (KB and task-learned) with minimal information loss, we project
a shared space of discrete and continuous features using Singular Vector Canonical Correlation
Analysis (SVCCA; Raghu et al., 2017).

Canonical correlation analysis (CCA) allows us to find a projection of two views for a given set of
data. With CCA, we look for linear combinations that maximise the correlation of the two sources
in each coordinate iteratively. CCA considers all dimensions of the two views as equally import-
ant. However, our sources are potentially redundant: KB features are mostly one-hot-encoded,
whereas task-learned ones inherit the high dimensionality of the embedding layer. Moreover, few
samples and sparsity could make the convergence harder. For the redundancy issue, singular value
decomposition (SVD) is an appealing alternative. With SVD, we factorise the source data matrix
to compute the principal components and singular values. The two-step transformation of SVD
followed by CCA is called SVCCA (Raghu et al., 2017) in the context of understanding the rep-
resentation learning throughout neural network layers. That being said, we use SVCCA to get
language representations and not to inspect a neural architecture.

In the work by Oncevay et al. (2019), we fuse language-level embeddings from multilingual ma-
chine translation with syntactic features of WALS. We inspect how much typological knowledge
is present by predicting features for new languages. Then, we infer language phylogenies (Ra-
binovich et al., 2017) and inspect whether specific relationships are induced from the task-learned
vectors. Furthermore, to demonstrate that our approach has practical benefits in NLP, we apply
our language vectors in multilingual NMT with language clustering (Tan et al., 2019) and adapt
the ranking of related languages for multilingual transfer (Lin et al., 2019).

We list our key findings as follows:

1 An example of a typological feature is a word order specification, like whether the adjective is predominately placed
before or after the noun.

page 5 of 36



GoURMET H2020–825299 D4.1 Initial progress report on transfer learning

• SVCCA can fuse linguistic typology KB entries with NMT-learned embeddings without di-
minishing the originally encoded typological and genetic similarity of languages: By assess-
ing an typological feature prediction task, we identified that the multi-view vectors outcome
their single counterparts in most of the cases. Similarly, the SVCCA-based embeddings
allow a better reconstruction of a phylogenetic tree of 17 Indo-European languages.

• Our representations provides a robust alternative to determine which related languages are
suitable for multilingual transfer learning in clustering or ranking related languages. The
notable advantage is that we do not need to pre-train MT systems from a specific dataset
(e.g. like in LangRank (Lin et al., 2019)), and we can easily extend the coverage of lan-
guages without re-training a ranking model to consider new language entries, or pre-train
multilingual language embeddings for a massive model.

• Factored language embeddings encodes more information to agglomerate related languages
than an initial pseudo-token setting: With factors, the embedding of every input token was
concatenated with the embedded pseudo-token that identifies the source language, whereas
an initial pseudo-token setting only adds the source language at the beginning of every input
sentence. The latter are not suitable for clustering, and they might only encode enough
information to perform a classification task.

Furthermore, we are building an open-source tool to compute multi-view language representations
using SVCCA. We enable the option to use any kind of language vectors from lang2vec (Syntax,
Phonology or Phonetic Inventory) as a KB-source, and to upload new task-learned embeddings
from different settings, such as many-to-one, one-to-many or many-to-many NMT and multilingual
language modelling. Besides, given a list of languages to assess, our method will project new
language representations when they are only available in the KB-view. Finally, we include the
tasks of language clustering and ranking candidates, which could benefit multilingual NLP studies
that involves massive datasets of hundreds of languages (Zhang et al., 2020).

2.2 Synthetic data generation through pivoting

When designing a machine translation system between a high-resource language such as English
and a distant low-resource language, it is not uncommon for there to be a greater amount of parallel
data available between another related high or medium resource language and English. This is the
case when the ”pivot” language has a larger number of speakers or greater political importance than
our low-resource language of interest to which is related by geographical or cultural proximity.

Our case study for this scenario is our English-Gujarati system (Bawden et al., 2019) where we
were able to successfully use Hindi as a “pivot” medium-resource language.

Hindi is a widely spoken language, which, like Gujarati, belongs to the Indo-Aryan family. The
two languages are closely related in terms of lexicon and syntax, and they are written using vari-
ants of the Devanagari script, which while encoded by different Unicode characters, can be easily
transliterated into each other2. While we were able to access only a small amount of Hindi-Gujarati
parallel data (approximately 8,000 sentence pairs from the Emille corpus3 ), we could exploit large
amounts of monolingual data for both languages to train a Hi→Gu machine translation system

2 Technically, transliteration from Hindi characters to Gujarati characters is a surjective function.
3 https://www.lancaster.ac.uk/fass/projects/corpus/emille/
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using the semi-supervised variant of XLM (Lample and Conneau, 2019), which turned out to be
particularly effective given the similarity between the languages. We did not attempt fully unsuper-
vised translation because we intended to exploit the parallel data in order to obtain the maximum
possible translation quality. We used this system to translate approximately 1.1 million Hindi
sentences from a Hindi-English parallel corpus into Gujarati. Since each of these sentences is
aligned to an English sentence, this resulted in a parallel corpus consisting of 1.1 million natural
English–synthetic Gujarati sentence pairs, which we used as backtranslations to train our Gu→En
model and as forward translations to train our En→Gu model. Further description of this system
is provided in Section 3.1 and in Deliverable 5.3 Section A.2.

We submitted our system to the 2019 Conference on Machine Translation (WMT19) news trans-
lation shared task, achieving the second-best position for Gu→En and first position for En→Gu
among the constrained submissions.

We further developed synthetic data generation through pivoting as an online procedure applied
during a fine-tuning stage of a massively multilingual machine translation system (Zhang et al.,
2020), described in the next section.

2.3 Multilingual Neural Machine Translation and Zero-Shot Translation

In multilingual translation, a single NMT model is optimized for the translation of multiple lan-
guage pairs (Firat et al., 2016a; Johnson et al., 2017b; Lu et al., 2018; Aharoni et al., 2019).
Multilingual NMT eases model deployment and can encourage knowledge transfer among related
language pairs (Lakew et al., 2018; Tan et al., 2019), improve low-resource translation (Ha et al.,
2016; Arivazhagan et al., 2019), and enable zero-shot translation (i.e. direct translation between a
language pair never seen in training) (Firat et al., 2016b; Johnson et al., 2017b). The last two goals
are especially relevant in the GoURMET context.

Despite these potential benefits, multilingual NMT tends to underperform its bilingual counter-
parts (Johnson et al., 2017b; Arivazhagan et al., 2019) and results in considerably worse translation
performance when many languages are accommodated (Aharoni et al., 2019). Since multilingual
NMT must distribute its modeling capacity between different translation directions, we ascribe
this deteriorated performance to the deficient capacity of single NMT models and seek solutions
that are capable of overcoming this capacity bottleneck (as simply increasing model size might not
scale to the quadratic number of language pairs and translation directions).

In Zhang et al. (2020), we proposed language-aware layer normalization and linear transformation
to relax the representation constraint in multilingual NMT models. Language-aware layer normal-
ization makes the gain and bias parameters of the layer normalization blocks of the neural network
dependent on the language rather than being shared between all the language as the parameters of a
multi-lingual NMT model usually are4. The language-aware linear transformation further extends
this specialization by inserting a language-dependent matrix between the encoder and the decoder
so as to facilitate the induction of language-specific translation correspondences. We also invest-
igated very deep NMT architectures with specialized initialization schemes (Wang et al., 2019;
Zhang et al., 2019) aiming at further reducing the performance gap with bilingual methods.

Another pitfall of massively multilingual NMT is its poor zero-shot performance, particularly com-
pared to pivot-based models. Without access to parallel training data for zero-shot language pairs,

4 This only slightly increases the total number of parameters of the system since gain and bias parameters have a size
proportional to model width rather than the square of model width as with matrices.
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multilingual models easily fall into the trap of off-target translation where a model ignores the
given target information and translates into a wrong language. To avoid such a trap, in Zhang et al.
(2020), we proposed the random online backtranslation (ROBt) algorithm. ROBt finetunes a pre-
trained multilingual NMT model for unseen training language pairs with pseudo parallel batches
generated by back-translating the target-side data during training, while language pairs are ran-
domly sampled.

We performed backtranslation (Sennrich et al., 2016a) into randomly picked intermediate lan-
guages to ensure good coverage of ∼10,000 zero-shot directions. Although backtranslation has
been successfully applied to zero-shot translation (Firat et al., 2016b; Gu et al., 2019; Lakew
et al., 2019), whether it works in the massively multilingual set-up remained an open question and
we investigated it in our work (Zhang et al., 2020).

For the experiments, we collected OPUS-100, a massively multilingual dataset sampled from
OPUS (Tiedemann, 2012). OPUS-100 consists of 55M sentence pairs between English and 99
other languages. As far as we know, no similar dataset is publicly available. We have released
OPUS-100 to facilitate future research.5 We adopted the Transformer model (Vaswani et al.,
2017a) and evaluated our approach under one-to-many and many-to-many translation settings.
Our main findings are summarized as follows:

• Increasing the capacity of multilingual NMT yields large improvements and narrows the
performance gap with bilingual models. Low-resource translation benefits more from the
increased capacity.

• Language-specific modeling and deep NMT architectures can slightly improve zero-shot
translation, but fail to alleviate the off-target translation issue.

• Finetuning multilingual NMT with ROBt substantially reduces the proportion of off-target
translations (by ∼50%) and delivers an improvement of ∼10 BLEU points in zero-shot set-
tings, approaching the conventional pivot-based method. We show that finetuning with ROBt
converges within a few thousand steps.

3 Task 2: Learning from Monolingual Corpora

Monolingual text is usually much more readily available than parallel text for any language pair,
which makes it an attractive resource to leverage when training a machine translation system,
or really any natural language processing application (Devlin et al., 2018). Monolingual text is
already beneficial for high-resource language pairs, as shown by Sennrich et al. (2016a) in their
seminal work on backtranslation, but becomes of paramount importance for low-resource language
pairs, where parallel data is scarce and usually out-of-domain and noisy.

In the GoURMET project proposal we had mentioned backtranslation and other standard semi-
supervised baselines. We had also referenced cross-lingual word embedding induction (Miceli Bar-
one, 2016) and the recently developed unsupervised translation techniques (Artetxe et al., 2018;
Lample et al., 2018) which we planned to use in semi-supervised mode combining parallel and
monolingual data. In the work carried out so far we applied these techniques and researched im-
provements and alternative methodologies, in synergy with the multilingual techniques described
in section 2.
5 https://github.com/EdinburghNLP/opus-100-corpus

page 8 of 36

https://github.com/EdinburghNLP/opus-100-corpus


GoURMET H2020–825299 D4.1 Initial progress report on transfer learning

3.1 Semi-supervised NMT (WMT English↔Gujarati, English↔Tamil)

3.1.1 English↔Gujarati

For our English↔Gujarati (Bawden et al., 2019) system we made ample use of semi-supervised
machine translation techniques in order to leverage the available monolingual data.

We used the XLM cross-lingual pretraining approach of Lample and Conneau (2019), which con-
sists of training a masked language model (much like BERT (Devlin et al., 2018)) on both monolin-
gual data and parallel English and Gujarati data, and then intialising both the encoder and decoder
of a multi-way English-Gujarati machine translation model with the pretrained parameters of the
language model. The machine translation model and the additional translation-specific parameters
are then fine-tuned using machine translation objectives. We chose to use semi-supervised ma-
chine translation learning for this step, which makes the most of both available parallel data but
also monolingual data in both languages by alternating machine translation, auto-encoding and
backtranslation steps.

We trained both an initial English↔Gujarati model to produce backtranslations (Sennrich et al.,
2016a) and a (transliterated) Hindi↔Gujarati model to produce synthetic data through pivoting
(Section 2.2). This synthetic data was added to the natural parallel data to train our final models,
resulting in top-level translation quality. Specifically, in the WMT19 news translation shared task
human evaluation, we obtain the best result in the English→Gujarati direction and the second best
result in the Gujarati→English direction among the constrained system submissions. See also
Deliverable D5.3 Section A.2 for a general description of this system.

3.1.2 English↔Tamil

Based on the large improvements brought by exploiting semi-supervised MT and backtransla-
tion for English↔Gujarati at the WMT19 news shared task, we adopted a similar strategy for
English↔Tamil at the WMT20 shared task. Other than the shared task submission, we also plan to
conduct more extensive experiments looking at the best method of combining backtranslations pro-
duced by different systems of different quality. This presents ongoing work, and therefore results
of our investigations will be presented at the end of the project.

Like English–Gujarati, English–Tamil (EN-TA) is a low-resource language pair that presents chal-
lenges for standard supervised MT due to the lack of data but also the rich morphology of Tamil,
which makes translation into Tamil particularly difficult. Using the available monolingual and par-
allel data, we compare a range of different MT models trained in different ways and using different
types of data (either one for each direction or a joint model):

• Moses baseline: a phrase-based Moses model (Koehn et al., 2007) trained on parallel data
segmented using SentencePiece (Kudo and Richardson, 2018) (vocabulary of size 20k). We
also use 5-gram language models into English, lexicalised reordering and 5-gram operation
sequence modelling.

• Marian baseline: transformer-based baselines trained on parallel data using Marian (Junczys-
Dowmunt et al., 2018). The best subword segmentation vocabulary sizes are 7.5k for TA→EN
and 2.5k for EN→TA, illustrative of the fact that more segmentation (smaller vocabulary) is
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beneficial for more morphologically rich languages.6

• Marian multilingual: many-to-one and one-to-many multilingual Marian models (small
transformers with two layers) on multilingual parallel Indian data. We use Telugu and Hindi
as additional languages as they provide most gains in the multilingual setting. We preprocess
using a 20k SentencePiece model for all language pairs transliterated into the Tamil script.

• XLM pretraining: As for En↔GU, an XLM model (Conneau and Lample, 2019), which
involves pretraining a transformer-based model using a cross-lingual language modelling
objective (with monolingual and parallel data),7 before fine-tuning to MT. We choose to
fine-tune using a semi-supervised MT objective (using both monolingual and parallel data).
We preprocess using a SentencePiece vocabulary of 20k for both directions.

• Marian mBART pretraining: a second model using language model pretraining, this time
trained used Marian and using the mBART objective (Liu et al., 2020), which differs from
XLM in that it does fully sequence-to-sequence pretraining of the entire encoder-decoder
model, whereas XLM performs masked language modelling and does not pretrain the whole
model as one. We again use a SentencePiece vocabulary of 20k for both directions.

• Marian DE–EN pretraining: Marian transformer-based models pretrained on translations
for an unrelated but higher resource language pair. We choose to pretrain on DE–EN trans-
lation, using a vocabulary that is shared between English, German and Tamil, in order for
those parameters to be fine-tuned afterwards on English-Tamil translation.

The initial results of these individual models (all models fine-tuned on parallel EN–TA data), as
measured using the standard automatic metric BLEU (Papineni et al., 2002) using the SacreBLEU
toolkit (Post, 2018), are shown in Table 1. The NMT models outperform the phrase-based model
(Moses base), and using additional resources, either in the form of multilingual data (Marian mul-
tilingual) or in pretraining (last three rows) helps in both directions. Pretraining produces the best
models, with little difference between the three strategies tested.

In scenarios with little parallel data, but with some available monolingual data, it is common to
use backtranslation to produce additional synthetic data. This brought a significant boost to our
English-Gujarati models previously described. We therefore experiment with iterative backtransla-
tion using our best models each time. This involves training models on the synthetically translated
parallel data added to the genuine parallel and then fine-tuning on the genuine parallel data alone.
The initial results (with one iteration of backtranslation) are presented in Table 2 for some of the
models. This suggests that the scores can be greatly boosted by using backtranslation, especially
when pretraining of the model is used as well.

6 These correspond to relatively small vocabularies, reflecting the small amount of data these models are trained on,
compared to the other models mentioned, which use monolingual and synthetic parallel data. The EN→TA direction
especially benefits from a high degree of segmentation (i.e. a small vocabulary), as it is morphologically rich and
the lack of data more heavily impacts how often different inflections of words are seen in the training data; a higher
segmentation rate means that the model can better generalise.

7 XLM involves training a transformer encoder to predict masked out words in raw sentences i.e. using a masked
language modelling objective similar to BERT (Devlin et al., 2018). The difference is that as well as the model being
trained on sentences from each language separately (from monolingual data), it is also trained on parallel examples
(the concatenation of the sentence in both languages), from which several words can be masked out. The idea is that
the information required to predict the masked out word could then be inferred from the translation of the sentence,
thus teaching the model to recognise translation-like relations.
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Dev BLEU
Model name EN↔TA TA↔EN

Moses base 3.0 6.2
Marian base 5.1 10.1
Marian multilingual 7.1 10.6
Marian mBART pretraining 7.4 14.0
XLM pretraining 7.4 13.4
Marian DE–EN pretraining 7.5 14.0

Table 1: BLEU scores on the development set of each model for EN–TA translation.

Dev BLEU
Model name Backtranslation source EN↔TA TA↔EN

Marian base XLM pretraining 9.9 16.5
Marian DE–EN pretraining XLM pretraining 10.1 18.3
Marian mBART pretraining Marian mBART pretraining 11 18.6

Table 2: BLEU scores on the development set of a selection of models are training on synthetic (back-
translated) and parallel data for EN–TA translation. Backtranslation source refers to the model
that was used to produce the backtranslations that are used as additional training data.

We plan to provide a set of systematic experiments exploring the usefulness of backtranslations
produced by the different models described above, used to train different types of MT models. We
hope that this will provide valuable insights into how to best exploit different models and what sort
of backtranslated data is useful. We will specifically answer the following research questions:

• Is the quality of the model used to produce backtranslations (Table 1) really the defining
factor when it comes to the usefulness of backtranslations?

• Can it be useful to use a mixture of backtranslations from different models despite differences
in quality? And can this diversity in quality actually be exploited?

• What would the ideal combination of different models be to produce an optimal model after
several rounds of backtranslation?

3.2 Language Model Prior for Low-Resource Neural Machine Translation

Neural machine translation (NMT) (Sutskever et al., 2014; Bahdanau et al., 2015b; Vaswani et al.,
2017b) relies heavily on large parallel corpora (Koehn and Knowles, 2017) and needs careful
hyper-parameter tuning, in order to work in low-resource settings (Sennrich and Zhang, 2019).
A popular approach for addressing data scarcity is to exploit abundant monolingual corpora via
data augmentation techniques, such as back-translation (Sennrich et al., 2016a). Although back-
translation usually leads to significant performance gains (Hoang et al., 2018), it requires training
separate models and expensive translation of large amounts of monolingual data. However, when
faced with lack of training data, a more principled approach is to consider exploiting prior inform-
ation.
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Language models (LM) trained on target-side monolingual data have been used for years as priors
in statistical machine translation (SMT) (Brown et al., 1993) via the noisy channel model Shan-
non and Weaver (1949). Unlike maximum likelihood training that directly models p(y|x), noisy
channel models the “reverse translation probability” p(x|y), by rewriting p(y|x) ∝ p(x|y) × p(y).
This approach has been adopted to NMT, with the neural noisy channel (Yu et al., 2017; Yee et al.,
2019). However, neural noisy channel models face a computational challenge, because they require
multiple passes over the source sentence x as they generate the target sentence y, or sophisticated
architectures to reduce the passes.

LMs have also been used in NMT for re-weighting the predictions of translation models (TM), or
as additional context, via LM-fusion (Gulcehre et al., 2015; Sriram et al., 2018; Stahlberg et al.,
2018). But, as the LM is required during decoding, it adds a significant computational overhead.
Another challenge is balancing the TM and the LM, whose ratio is either fixed (Stahlberg et al.,
2018) or requires changing the model architecture (Gulcehre et al., 2015; Sriram et al., 2018).

In Baziotis et al. (2020), we propose to use a LM trained on target-side monolingual corpora as a
weakly informative prior. We add a regularization term, which drives the output distributions of
the TM to be probable under the distributions of the LM. Specifically,

L =

N∑
t=1

− log ptm(yt|y<t, x) + λDkl(plm(yt|y<t) ‖ ptm(yt|y<t, x))

The first term is the standard translation objectiveLmt and the second is the regularization termLkl,
which we interpret as a weakly informative prior over the TM’s distributions ptm, that expresses
partial information about y. Lkl is defined as the Kullback-Leibler divergence between the output
distributions of the TM and the LM, weighted by λ.

This gives flexibility to the TM, by enabling it to deviate from the LM when needed, unlike fusion
methods that change the decoder’s distributions, which can introduce translation errors. The LM
“teaches” the TM about the target language similarly to knowledge distillation (Bucila et al., 2006;
Hinton et al., 2015). This method works by simply changing the training objective and does not
require any changes to the model architecture. Importantly, the LM is separated from the TM,
which means that it is needed only during training, therefore we can decode faster than fusion
or neural noisy channel. We also note that this method is not intended as a replacement to other
techniques that use monolingual data, such as back-translation, but is orthogonal to them.

Main Findings In our experiments we use two low-resource language pairs, the English-German
(EN-DE) News Commentary v13 provided by WMT Bojar et al. (2018) 8 (∼275K pairs) and the
English-Turkish (EN-TR) WMT-2018 parallel data from the SETIMES29 corpus (∼200K pairs).
As monolingual data for English and German we use the News Crawls 2016 articles (Bojar et al.,
2016) and for Turkish we concatenate all the available News Crawls data from 2010-2018, which
contain 3M sentences. For English and German we subsample 3M sentences to match the Turk-
ish data, as well as 30M to measure the effect of stronger LMs. In all experiments, we use the
Transformer architecture for both the LMs and TMs.

First, we use in all methods LMs trained on the same amount of monolingual data, which is 3M
sentences. We used the total amount of available Turkish monolingual data (3M) as the lowest

8 http://www.statmt.org/wmt18/translation-task.html
9 http://opus.nlpl.eu/SETIMES2.php
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common denominator. This is done to remove the effects of the size of monolingual data from
the final performance of each method, across language-pairs and translation directions. Overall,
adding the LM-prior consistently improves performance in all experiments. Specifically, it yields
up to +1.8 BLEU score gains over the strongest baseline. This shows that the proposed approach
yields clear improvements, even with limited monolingual data (3M).

Next, we lift the monolingual data constraint, in order to evaluate the impact of stronger LM-
priors. Specifically, for English and German we use LMs trained on 30M sentences. We observe
that the stronger LMs yield improvements only in the EN→DE direction. This could partially be
explained by the fact that German has richer morphology than English. Therefore, it is harder for
the decoder to avoid grammatical mistakes in low-resource settings while translating into German,
and a stronger prior is more helpful for X→DE than X→EN.

We also conducted experiments that measure the effect of the LM-prior on different scales of
parallel data. Specifically, we emulate more low-resource conditions, by training on subsets of the
EN→DE parallel data. We observe that adding the LM-prior yields consistent improvements, even
with as little as 10K parallel sentences.

Finally, we perform an analysis on the effects that different methods have on the output distri-
butions of the TM. Specifically, we evaluate each model on the DE→EN test-set and for each
target token we compute the entropy of each model’s distribution. We find that the gains from
the LM-prior cannot be explained just from smoothing the distributions of the TM, like what label
smoothing (Szegedy et al., 2016) regularization does. This suggests that the propose technique
indeed works by exploiting information from the LM. Next, we focus on LM-fusion techniques
and show that, even though they might improve fluency, they can hurt translation quality in certain
cases because the model cannot resolve large “disagreements” between the TM and LM, which
leads to wrong predictions.

3.3 Cross-lingual word-embeddings induction

Cross-lingual word embeddings are word embedding vectors which are trained to be consistent
between multiple languages: the embedding of a word in one language should be close to the
embedding of its translation in a different language, possibly up to a know transformation. Cross-
lingual word embeddings are useful to initialize multi-lingual models, such as unsupervised ma-
chine translation systems (Lample et al., 2018; Artetxe et al., 2018), which makes them attractive
for the low-resource scenarios of the GoURMET project.

Cross-lingual word embeddings can be learned from parallel dictionaries or parallel text, but these
resources might be hard to acquire for some of the very low-resource language pairs that we con-
sider in this project. A related approach exploits the shared vocabulary that naturally occur in
monolingual text: certain tokens such as numbers, dates, names of people, companies, products,
etc. tend to have the same orthography and the same meaning between different languages, even
from different language families. In some cases, this minimal shared vocabulary can provide
enough signal to align embedding spaces between different languages, enabling cross-lingual word
embedding induction (Artetxe et al., 2017). Nevertheless, this approach is not without limitations:
languages written in different scripts tend to share less vocabulary and even after transliteration
names might not match exactly; names might be also subject to declension in morphologically-
rich languages such as the Turkic languages that we consider in Gourmet; moreover, number and
date format might vary between languages: many languages such as English use West Arabic nu-
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merals which descend from but are typographically different from the Indian numerals still in use
in many Indic languages which we target in Gourmet. For these reasons, the naturally occurring
shared vocabulary might not be always sufficient to provide a strong enough training signal. There-
fore, we considered fully-unsupervised cross-lingual word embedding induction: in this setting we
attempt to infer a correspondence between words in different languages, and hence their embed-
dings, based purely on their statistical properties in monolingual texts, based on an approximate
distribution isomorphism assumption between languages (Miceli Barone, 2016).

A number of different methods to cross-lingual word-embedding induction have been proposed in
the literature (Ruder et al., 2019). Broadly speaking, they can be divided in two main approaches:
joint training of word embeddings in multiple languages and cross-lingual alignment between sep-
arately pretrained embeddings. In our work we investigated both approaches.

3.3.1 Cross-lingual embedding alignment with normalizing flows

Normalizing flows (Rezende and Mohamed, 2015; Papamakarios et al., 2019) are frameworks for
estimating the density of continuous probability distributions by learning an invertible transform-
ation between distributions. Zhou et al. (2019) applied normalizing flows to the problem of cross-
lingual embedding alignment by defining a probability distribution over the embedding space of
each language as an equal mixture of Gaussians with means corresponding to the pretrained mono-
lingual embeddings and small spherical variance, then they learn linear flows to transfrom one of
the distribution to the other one. Their approach, however, also uses the shared vocabulary between
languages as an additional learning signal, hence it is not fully unsupervised, and fails completely
when this signal is removed.

In this project we attempted to train an expressive non-linear flow based on the split-coupling
architecture of Glow (Kingma and Dhariwal, 2018). Glow defines a parametric transformation
implemented by a neural network which is trained to learn a mapping between two distributions.
The invertibility of the neural network is provided by its architectural constraints, specifically
being made of a sequence of linear layers with square matrices (invertible for almost all parameter
values) and Feistel network-like parametric non-linear blocks.

Let

ps(x) =
1
N

N∑
i=1

N(x,w(i)
s , σ

2I)

pt(y) =
1
N

N∑
i=1

N(y,w(i)
t , σ

2I)

be the word embedding distributions for the s and t languages, each defined on top of N pretrained
word embeddings

{
w(i)

s

}N

i=1
and

{
w(i)

t

}N

i=1
. We seek to find an invertible parametrized transformation

from fs→t(x, θ) that optimizes the normalizing flow objective

argmaxθEx∼ps

[
log pt( fs→t(x, θ)) + log

∣∣∣∣∣det
d
dx

fs→t(x, θ)
∣∣∣∣∣]

We discovered early on that without the shared vocabulary signal, our the model also struggles to
train. We identified the problem with the shape of the mixture of Gaussians distribution that we
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used as a prior: this distribution has as many modes as the number of word embeddings, resulting
in an extremely non-convex loss function that is impossible to optimize by gradient descent10. We
attempted to address this issue by augmenting the embedding spaces by concatenating them with
zero-mean spherical Gaussian noise and by replacing the exact mixture of Gaussian prior with a
learned neural network estimator trained by noise-contrastive estimation (Gutmann and Hyvärinen,
2010) or conditional noise-contrastive estimation (Ceylan and Gutmann, 2018). Unfortunately we
were not able to train a satisfactory transformation between embedding spaces.

We also experimented with a different formulation of flows. Instead of trying to directly map the
embedding distributions of different languages into each other, we learn two separate flows, one
for each language, that map word embeddings into a shared latent space on which we impose a
simple zero-mean spherical Gaussian distribution.

The optimization objective is

argmaxθEx∼ps

[
log ph( fs→h(x, θ)) + log

∣∣∣∣∣det
d
dx

fs→h(x, θ)
∣∣∣∣∣] +

Ey∼pt

[
log ph( ft→h(y, θ)) + log

∣∣∣∣∣det
d
dy

ft→h(y, θ)
∣∣∣∣∣]

where ph(z) = N(z, 0, σ2I)

Once the model is trained, a direct transformation between embedding spaces can be obtained by
exploiting the fact that split-coupling flows enable closed-form efficient computation of inverse
transformations; therefore

fs→t(x, θ) = f −1
t→h( fs→h(x, θ), θ)

The main advantage of this approach is that the latent distribution is unimodal, enabling effective
optimization as long as the flow transformations have sufficient expressive power. Unfortunately
expressive transformations tend to align the embedding spaces in arbitrary ways that don’t ne-
cessarily map words in one language to their translations in the other language. We tried to bias
the model towards learning semantically consistent transformations by aggressively sharing para-
meters between the flows: they share all the layers except the first weight matrix which we keep
language-specific:

fs→h(x, θ) = g(Ws · x, θ)
ft→h(y, θ) = g(Wt · y, θ)

which results in

fs→t(x, θ) = W−1
t ·Ws · x

We further experimented with constraining Ws and Wt to be orthogonal.

We found that this method can learn some degree of mapping between English-Spanish word
embeddings, but generally underperforms the baselines, hence we did not pursue it any further.
10Neural networks can be often trained despite their optimization objective being generally non-convex as long as they

are sufficiently overparametrized (Allen-Zhu et al., 2018); however, the loss function applied to the outputs must me
convex in order for this to work.
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3.3.2 Attention-based joint crosslingual embedding training

We investigated a method to jointly train cross-lingual word embeddings from pairs of monolingual
corpora. Unlike the previous method where we attempted to align pretrained embeddings, here we
seek to use a single training procedure to obtain monolingual embeddings for two different lan-
guages with the property that embeddings of words that are translations should be similar. Unlike
most alignment methods, we don’t seek to generate strict one-to-one alignments, since in general
word translation is not strictly one-to-one, especially when one language is morphologically rich
and the other one is not.

We extend the Skipgram approach (Mikolov et al., 2013). In the Skipgram approach a dictionary of
the N most frequent word type is constructed associating each word type i to two vectors: a center
embedding w(i), which will be returned as the final word embedding, and a context embedding
c(i). The training procedure uses a contrastive objective that pushes the center embedding of words
occurring in the training text close to the context embeddings of words occurring in a small window
around it and far from randomly sampled words.

In our approach we assume a dictionary of N latent ”concept” center embeddings
{
l( j)
o

}N

j=1
and N

corresponding latent concept context embeddings
{
l( j)
c

}N

j=1
that are shared between the two lan-

guages. The main idea is that the actual center embeddings for the words in each language will be
convex combinations of the latent concept center embeddings

w(i)
s =

N∑
j=1

a(i, j)
s · l( j)

o

w(i)
t =

N∑
j=1

a(i, j)
t · l( j)

o

and similarly for the context embeddings

c(i)
s =

N∑
j=1

a(i, j)
s · l( j)

c

c(i)
t =

N∑
j=1

a(i, j)
t · l( j)

c

The combination coefficient matrices as and at have non-negative elements with each row summing
to one.

We parametrize the combination coefficient using an attention mechanism: we define N latent key
vectors

{
l( j)
k

}N

j=1
and for each language we define N query vectors

{
q(i)

s

}N

i=1
and

{
q(i)

t

}N

i=1
, one for each

word type in the vocabulary. Then

a(i, j)
s = softmax j(< q(i)

s , l
( j)
k >)

a(i, j)
t = softmax j(< q(i)

t , l
( j)
k >)
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where

softmax j(x j) =
exp(x( j))∑
j′ exp(x( j′))

and < ·, · > denotes the dot product between vectors.

All these parameters are trained using the skipgram method using batches of monolingual text in
both languages.

As it is, this does not lead to representations that are consistent between each languages because the
attention coefficients tend to be dense. Therefore we included sparsity regularization to promote
each word to align to one or a few ”concepts”. We experimented with different sparsity losses such
as those described by Soulos et al. (2019).

We evaluated our approach on the English-Spanish language pair training on Wikipedia dump
monolingual corpora. We found that achieving both high sparsity and convergence in the skipgram
objective is hard even when including a learning schedule in the loss weights. There appears to be a
sharp ”phase transition” between a dense attention regime where the skipgram objective improves
and a sparse attention regime where the models fall into an inescapable local minimum. We also
experimented with different parametrizations (e.g. including a MLP in the attention computation)
and different normalization schemes (e.g. normalizing the embeddings to unit L2 norm, normal-
izing the attention weights to unit L2 norm instead of the usual unit L1 norm), but ultimately we
were not able to achieve competitive results.

3.4 Probabilistic back-translation

One of the most successful techniques for integrating monolingual data into NMT is back-translation
(Sennrich et al., 2016b), where a target monolingual corpus is translated using a pre-trained target-
to-source NMT system creating a synthetic parallel corpus that can be used as additional training
data. Whereas back-translation works very well in practice, it seems there is room for improve-
ment in the way that the back-translations are obtained. The back-translation system is trained
on its own separate objective, and not optimized towards the final goal (good translations in the
forward direction). Furthermore, the back-translation system consists of an entire distribution over
back-translations, yet we usually only use a single translation as additional data, limiting the cap-
ability to transfer knowledge. We formulate a probabilistic model of sentence pairs in which we
address those issues. Here, back-translation will appear as an approximate inference procedure.

Let x denote a source sequence and y a target sequence. We formulate a joint model of sequence
pairs as p(x, y) = p(x)p(y|x), where we additionally include a (fixed) source language model on top
of traditional NMT. Given both a parallel corpus B and a target monolingual corpusM, maximum
likelihood estimation tells us to optimize parameters θ by maximizing:

L(θ;B,M) =

|B|∑
i=1

log p(x(i), y(i)|θ) +

|M|∑
j=1

∑
x′∈X

log p(x′, y( j)|θ) (1)

where X denotes the set of all possible source sequences. The marginalisation over source sen-
tences here is clearly intractable. We can use variational inference (Jordan et al., 1999; Blei et al.,
2017) to do approximate inference instead. This will introduce an approximate posterior distribu-
tion q(x|y; φ) that we will model as a sequence of categorical draws from the source vocabulary

page 17 of 36



GoURMET H2020–825299 D4.1 Initial progress report on transfer learning

parameterised in context in order to approximate the true posterior p(x|y). q(x|y) is an NMT sys-
tem from target-to-source, i.e. a back-translation system. This yields the following lower-bound
to Equation 1:

L(θ;B,M) ≥
|B|∑
i=1

log p(x(i), y(i)|θ) +

|M|∑
j=1

Eq(x|y)[log p(y|x)] − KL (q(x|y)||p(x)) (2)

where KL denotes the Kullback–Leibler divergence.

Using Monte Carlo estimates we can now compute an estimate of the lower-bound. In order to
obtain gradient estimates for φ we use the REINFORCE estimator (Williams, 1992) and stand-
ard variance reduction techniques (Ross, 2006). The procedure for target monolingual data using
our formulation is as follows: i) sample a back-translation from q(x|y); ii) update θ by treating
the sample as a completion of the data and optimizing conditional likelihood; iii) update φ us-
ing REINFORCE gradients, maximizing forward likelihood on expectation and minimizing a KL
divergence between the back-translation system and the source language model.

Our probabilistic formulation of back-translation differs from traditional back-translation in three
ways: i) it samples back-translations rather than using beam search outputs, allowing for transfer
of the entire distribution of the back-translation system rather than only its mode; ii) the back-
translation system is trained on the same objective as the forward translation system is trained; iii)
we are able to include a pre-trained source language model to encourage fluent back-translations.

We trained a probabilistic back-translation system on English-German Multi30k (Elliott et al.,
2016) and Gourmet English-Turkish data. We note that it is necessary to initialize the back-
translation system q(x|y) using a traditional back-translation system as the REINFORCE gradients
are too noisy otherwise. For comparison we also train an identical system trained on parallel data
alone as well as a system including target monolingual data using traditional back-translation.

Our findings have shown that our probabilistic formulation is able to make use of monolingual data,
improving over a baseline not including monolingual data. However, our probabilistic formulation
is not able to match traditional back-translation in performance. We have boiled this down to two
factors that we need to tackle independently.

The first problem is that of posterior collapse, a problem often occurring when using variational
inference with strong decoders like the ones used in NMT (Bowman et al., 2016; Alemi et al.,
2018). Specifically, the KL component in the lower-bound tends to push the back-translation
system to generate fluent sentences that have semantically nothing in common with the target
monolingual sentence. We have been able to combat this using commonly used techniques to
remedy this such as KL annealing (Bowman et al., 2016) and KL free-bits (Kingma et al., 2016).
This has improved result slightly, but not up to the point of traditional back-translation.

The second issue is that sampled back-translations work poorly on low-resource languages (Edunov
et al., 2018) such as the ones used in the Gourmet project. We found that this problem is harder to
tackle, as unbiased sampling is a core part of our method. Using techniques to obtain more likely
samples did not give good results, likely due to biasing of the gradients. Therefore, we conclude
that this is a problem that needs to be solved first independently before we are able to continue
with any probabilistic formulation of back-translation in low-resource settings. This has motivated
an investigation that takes a closer look at what probability distributions learned by NMT systems
look like (Eikema and Aziz, 2020), also described in work package 3.
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3.5 Co-Training

NMT systems require vast amounts of labelled data, i.e. bilingual sentence pairs, to be trained
effectively. To meet this requirement, we typically combine different sources of data in one large
(or as large as possible) mix. For example, we combine data from different domains (e.g., religion,
politics, news, subtitling, manuals), synthetic data produced via back-translation (Sennrich et al.,
2016b), copied data (Currey et al., 2017), and even data involving related languages (Johnson et al.,
2017a). Translation direction, original language, and quality of translation are some of the many
factors that we typically cannot or choose not to control for (due to lack of information or simply
for convenience). To better deal with mixed-distribution datasets, we propose (Eikema and Aziz,
2018) to model sentence pairs under a shared latent space in the framework of variational auto-
encoders (Kingma and Welling, 2014). We show improvements across various testing conditions,
in particular, when learning from synthetic data in addition to parallel data.

In probabilistic back-translation (Section 3.4), we see that a back-translation component arises
naturally in a joint generative model trained semi-supervisedly via variational inference (Jordan
et al., 1999). The back-translation component essentially corresponds to an NMT model operating
in target-to-source direction. Unfortunately, difficulties with variance of unbiased gradient estim-
ators, necessary for variational inference, capped the potential of the approach. Here we side-step
the need for unbiased gradients by working in the framework of co-training (Blum and Mitchell,
1998). Essentially, we train two models, one in source-to-target and another in target-to-source dir-
ection, and let these models complete monolingual data to one another. In particular, we have these
models be Auto-Encoding Variational Neural Machine Translation (AEVNMT) models (Eikema
and Aziz, 2018).

Model. Define an AEVNMT model working in the source to target direction:

ELBO1 = Eq(z|x,y)

[
log

p(z)p(x|z, θ1)p(y|z, x, θ1)
q(z|x, y)

]
(3)

where we make the parametric choice q(z|x, y) ∝ q(z|x, λ1)q(z|y, λ2). That is, q(z|x, y) is propor-
tional to a product of Gaussians each of which individually depends only on either the source or
target sentence. In addition, define another AEVNMT model, this one operating in target to source
direction:

ELBO2 = Eq(z|x,y)

[
log

p(z)P(y|z, θ2)p(x|z, y, θ2)
q(z|x, y)

]
(4)

where we share q(z|x, y) ∝ q(z|x, λ1)q(z|y, λ2) with the source-to-target model. For test-time predic-
tions we use either q(z|x, λ1) or q(z|y, λ1), depending on the translation direction. We follow Eikema
and Aziz (2020) and use beam search conditioned on the mean of the variational posterior.

Parameter estimation. We train both models on the same bilingual data while promoting their
inference models to agree by minimising the following loss

L(θ1, λ1, θ2, λ2) = −ELBO1(θ1, λ1) − ELBO2(θ2, λ2) + JS(q(z|x, λ1)||q(z|y, λ2)) , (5)

which aggregates both negative ELBOs and a Jensen-Shannon penalty to promote agreement
between inference models.
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Semi-supervised training. Consider the case where we train the generative model p(z, x, y|θ1),
which operates from x to y, on target monolingual data. For that, we need to give latent treat-
ment to both z and x. In variational inference, we derive an ELBO with respect to a variational
approximation q(x, z|y) = q(x|y)q(z|x, y):

Eq(x|y)

[
Eq(z|x,y)

[
log

p(z)p(x|z, θ1)p(y|z, x, θ1)
q(z|y)q(x|z, y)

]]
(6)

At this point, we make a very convenient parametric choice:

q(x|y) , p(x|y, θ2) (7a)

where we employ the second model to perform inferences about missing source sentences. The
inference model for latent z remains the same, namely, q(z|x, y) ∝ q(z|x, λ1)q(z|y, λ2), but note that
in this case x is synthetic (generated). Note that to sample x from the AEVNMT model operating
in backward direction, we sample from q(z|y, λ2)p(x|z, y, θ2). Importantly, we have not violated any
of the requirements of variational inference, we have simply defined different inference networks
for different data points depending on their nature (bilingual or monolingual). Because we borrow
components of a model to define the inference component of another, we like to think of this as
a form of co-training (Blum and Mitchell, 1998). We further embrace the analogy of co-training
and keep the inference model q(x|y) fixed in a target-monolingual update, which circumvents the
need for high-variance gradient estimation with respect to the parameters of that component.

Summary of findings. We experimented with English-Turkish data using a subset of the cor-
pora used to build our systems in deliverable D5.3, namely, the SETIMES (Tyers and Alperen,
2010) parallel corpus (∼ 200, 000 sentence pairs) and a subset of its monolingual part (∼ 500, 000
sentences in each language). Overall, we observed gains from 0.5 to 1.0 BLEU compared to con-
ditional NMT with back-translation. Though modest, the gains were consistent across independent
training runs and were more pronounced as we reduced the amount of bilingual supervision. We
noticed that the output of co-trained AEVNMT models showed unigram statistics that were closer
to that of the training data, and that its latent code was predictive of the source of the data (namely,
parallel or synthetic). A comparison based on all of the available data for that language pair showed
0.2 and 0.4 BLEU improvement into Turkish and into English (see D5.3, section 2.3.3). The mod-
est improvements at this point might not seem to justify a more complex formulation, but in fact,
matching back-translation with a latent variable model is an important step for the project given
the importance of this class of models across work-packages. A complete report and experiments
involving additional GoURMET language pairs is in preparation.

4 Task 3: Learning from Lexical Resources

Bilingual dictionaries exist for most pairs of written languages. These dictionaries are curated
by linguists, hence they are usually of higher quality compared to parallel data automatically or
semi-automatically extracted from large collections of documents. Their general coverage may
be limited for low-resource languages, but it is often possible to create small domain-specific
dictionaries for specific terminology, which can highly benefit the quality of translation if properly
leveraged.
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The most obvious technique to exploit bilingual dictionaries is to simply add them to the parallel
data (which we mentioned as a baseline technique in the GoURMET project proposal), in addition
to auxiliary word prediction objectives for neural machine translation systems such as Nguyen and
Chiang (2017). We explored the data augmentation technique and additional techniques based
on multi-source translation (post-editing) based on a bilingual dictionary and additional morpho-
logical transfer rules. We plan to investigate additional training objectives based on bilingual
dictionaries in the second part of the project.

4.1 Multi-source approach for exploiting linguistic resources

Even though the languages of interest to the GoURMET project are under-resourced, for some of
them there are linguistic resources available, such as morphological analysers, bilingual dictionar-
ies and translation rules. In particular the rule-based MT platform Apertium (Forcada et al., 2011)
provides linguistic resources to some of the languages of interest to the project (see deliverable
D1.1 Survey of relevant low-resource languages).

In order to determine the potential of the linguistic resources available in Apertium we have con-
ducted experiments with the Breton–French language pair in Apertium (Tyers, 2010). This lan-
guage pair was selected for the following reasons:

• Breton is an under-resourced language. Bilingual corpora available amount to about 400,000
sentence pairs, of which about 80% is software localization text.

• The quality of the French it generates is not suitable for publishing; although it may be used
to get a rough idea of the meaning of a Breton text.

• Breton and French show some interesting grammatical contrasts. Both have morphological
richness but it is distributed differently. The translation between them poses a challenge
similar to that of some of the languages of interest to GoURMET:

– While French has a rich verb morphology, Breton’s is more reduced. Breton resorts
more often than French to periphrastic (compound) structures.

– French prepositions are mostly written separately from the following word (except for
a few contractions such as du, des or aux, and the use of apostrophes before a vowel); in
contrast, Breton prepositions join tightly to the next word when it is a pronoun, making
them similar to a verb conjugation: (ganin ’with me’, ganit ’with you’, ganto ’with
them’).

– French nouns and adjectives inflect at the end (number, gender). Breton nouns and ad-
jectives may additionally change at the beginning (in a process called initial consonant
mutation), which adds some additional sparseness to the vocabulary: tad ’father’ but
da dad ’your father’; ar vro vihan ’the small country’ (lit. ’the country small’) but ar
broioù bihan ’the small countries’ (lit. ’the countries small’).11

– The neutral word order in a Breton sentence is verb–subject–object (as in most Celtic
languages) while in French it is subject–verb–object.

11Examples taken from https://en.wikipedia.org/wiki/Breton mutations
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The idea was to combine knowledge extracted from the parallel corpus and knowledge explicitly
coded in the Apertium linguistic resources. For that, we used multi-source NMT and formalise the
problem of combining both sources of knowledge as an automatic post-editing (Chatterjee et al.,
2018) problem. In this way, we were able to explore different ways of generating the Apertium
output, using different resources, to study which resources are more useful for the hybrid approach.

The experiments conducted compared the performance of several baseline systems and the per-
formance of two multi-source NMT architectures —a recurrent attentional encoder–decoder (Bah-
danau et al., 2015a) and a Transformer encoder–decoder (Vaswani et al., 2017a)— when using
different resources. The baseline systems used were:

• A baseline NMT system trained solely on the training corpus.

• A baseline NMT system trained on a concatenation of the training corpus and the entries in
the Breton–French bilingual dictionary of Apertium.

• Apertium with hand-crafted rules: the full Apertium system. The linguistic resources used
by this system are: morphological analyser for Breton, morphological generator for French,
part-of-speech tagger of Breton, Breton–French bilingual dictionary of lemmas and shallow
structural transfer rules.

• Apertium with automatically-inferred rules. Same as above but using the shallow structural
transfer rules automatically inferred by Sánchez-Cartagena et al. (2015), instead of using
hand-crafted rules.

• Apertium with no structural transfer rules; i.e. without applying any structural transfer rule
to make the output more grammatical.

As regards the different ways of exploiting the linguistic resources in Apertium, we generated the
additional input translation provided to the multi-source NMT system with the same Apertium
configurations used as reference systems as well as a word-for-word translation obtained using
exactly the same bilingual dictionary we used for the baseline NMT system trained on bilingual
entries.

The results allow us to conclude that the use of Apertium resources improves translation qual-
ity. The best improvement —1.34 BLEU points and 2.11 chrF2++ points— was obtained when
the additional input to the multi-source NMT system was generated without structural transfer
rules. However, the performance of the Apertium baseline without structural transfer rules was
worse than that of Apertium using hand-crafted rules and automatically inferred rules. This results
suggest that Apertium may help the NMT system to perform a better lexical selection, since the
improvement in the grammaticality of the Apertium output provided by the shallow-transfer rules
had no effect on the quality of the final translation. In any case, the use of a morphological analyser
and part-of-speech tagger for Breton had a positive effect on the translation quality of the multi-
source NMT system. The addition of the bilingual dictionary to the training corpus seems to have
no effect on translation quality. Finally, the best results were obtained with a recurrent attentional
encoder–decoder; the Transformer seems to perform worse when the amount of training corpora
is scarce.

A detailed description of the approach and the experimental results obtained can be found in the
paper by Sánchez-Cartagena et al. (2020). The paper also includes the results of an automatic
error analysis that reveals that the multi-source NMT system using no transfer rules make fewer
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lexical errors, which account for most of the errors produced by the systems, but more reordering
and inflection errors. It seems that the multi-source system is able to make a better use of the
translations from the bilingual dictionary when they are sequentially placed in the additional input
rather than when they have been processed by transfer rules.

Future work. We plan to apply the multi-source approach described here to the development
of the translation models for Macedonian (one of the language selected for the third round of
languages), for which there are resources in Apertium. We will also study other architectures for
the inclusion of linguistic lexical resources in NMT.

4.2 Exploiting bilingual lexicons in Neural Machine Translation

Looking more specifically at the extra knowledge that can be gained from bilingual lexicons (paral-
lel lists of words or phrases), this ongoing work seeks to compare different approaches of exploiting
bilingual lexicons (parallel lists of words or phrases) to improve NMT for low resource languages.
The main advantage of using these resources is to provide extra vocabulary coverage for previously
unseen or rarely seen words in the training data.

In comparison to work exploiting monolingual data to increase vocabulary coverage, where parallel
data is scarce (Sennrich et al., 2016b; Edunov et al., 2018; Artetxe et al., 2018; Lample et al., 2018;
Lample and Conneau, 2019), integrating information from bilingual lexicons has the potential to
provide a light-weight solution to integrating words and phrases that would otherwise be unseen
in the parallel training data. The reason for this is that the linguistic information present within
them is already structured, whereas models have to learn to induce parallel correspondences when
using monolingual data. The use of these resources could therefore also be complementary to these
monolingual-data-heavy approaches.

Different approaches have already been proposed to exploit bilingual lexicons in NMT, of which
the following are representative of the different methods tried:

• Arthur et al. (2016) use a probabilistic phrase table as a form of bilingual lexicon, from
which they externally calculate lexicon probabilities. These lexicon probabilities are then
combined with the NMT probabilities for each time step using a fixed gating parameter.

• Feng et al. (2017) also exploit phrase tables, but integrate how they are queried into the NMT
model itself, by using an additional attention mechanism to query the possible target terms
that correspond to the matching source terms in the source sentence.

• Constrained decoding (Hasler et al., 2018; Post and Vilar, 2018) has been proposed to force
outputs to contain phrases that are matched in a lexicon. This method is particularly adapted
for the use of terminologies in unambiguous and controlled language settings.

• An alternative approach was proposed by Dinu et al. (2019), which consists in training an
NMT model on data in which the source sentences are annotated inline for possible transla-
tions selected from a lexicon (specifying the origin of each word using source factors).

The last two approaches in particular gave performance gains to MT quality because of their ability
to heavily bias if not force the model to produce certain words in the translation. However, the
methods have not been compared in equal settings; the last two approaches were evaluated in gold
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settings, whereby you assume that you know in advance which source terms should definitely be
translated by which target terms.

The aim of this ongoing work is therefore to compare the different approaches in a generic transla-
tion setting (rather than a controlled language one), to see whether these approaches can give gains
for low resource languages using the latest NMT architectures.

The comparison cannot be based purely on automatic metric scores such as BLEU (Papineni et al.,
2002), as they offer little insight into whether the modification of terms leads to good alternative
translations, especially if they differ from the human reference translations. We will therefore
study more in depth how to evaluate lexicon-guided MT, asking what it means for (i) a translation
to be good, and (ii) what a good exploitation of the lexicon means. What we observe is a juggling
act between exploiting the lexicon as much as possible, without resorting to overly literal and
word-by-word translation.

We also propose a new approach to exploiting bilingual lexicons, combining the various advantages
of the approaches cited. The details of this model are currently being refined, and experimental
results will be available in the coming months. The method, inspired by the use of the lexicon as
an external memory is defined by the following characteristics:

• Effective use of the fact that the lexicon is structured as source and target items that are
aligned. The association between source and target terms provided in the lexicon acts as
useful supervision (i.e. it should not be entirely left to the NMT model to decide which
target words to look at most).

• The NMT model is able to query the lexicon flexibly depending on how confident the model
is about its own decision and whether or not it requires the additional support from the
lexicon

• Subwords units is a built-in feature of the model rather than a detail that must be handled
heuristically. The use of segmentation into subword units (Sennrich et al., 2016c) has be-
come standard in NMT and is essential for generalising vocabulary coverage particularly in
low resource scenarios. Therefore the representation of the lexicon is compatible with such
a representation, and with the fact that both source and target sentences are represented by
subword units rather than whole words.

• Finally, ambiguity should be allowed in terms of which lexicon items are possible targets,
and the model is able to decide between these variants based on the current context.

5 Publications

These papers are the result of research done in transfer learning in the GoURMET project.

• Arturo Oncevay, Barry Haddow, and Alexandra Birch. Towards a multi-view language rep-
resentation:a shared space of discrete and continuous language features. In the First Work-
shop on Typology for Polyglot NLP, Florence, Italy, 2019 Best Paper Award

• Arturo Oncevay, Barry Haddow, and Alexandra Birch. Bridging linguistic typology and
multilingual machine translation with multi-view language representations. arXiv preprint,
2020. URL https://arxiv.org/abs/2004.14923
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• Rachel Bawden, Nikolay Bogoychev, Ulrich Germann, Roman Grundkiewicz, Faheem Kirefu,
Antonio Valerio Miceli Barone, and Alexandra Birch. The University of Edinburgh’s Sub-
missions to the WMT19 News Translation Task. In Proceedings of the Fourth Conference
on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 103–115, Florence,
Italy, 2019

• Biao Zhang, Philip Williams, Ivan Titov, and Rico Sennrich. Improving massively multi-
lingual neural machine translation and zero-shot translation. Association for Computational
Linguistics (to appear), 2020

• Christos Baziotis, Barry Haddow, and Alexandra Birch. Language model prior for low-
resource neural machine translation. arXiv preprint, 2020. URL https://arxiv.org/abs/2004.
14928

• Bryan Eikema and Wilker Aziz. Auto-encoding variational neural machine translation. arXiv
preprint arXiv:1807.10564, 2018

• Bryan Eikema and Wilker Aziz. Is MAP Decoding All You Need? The Inadequacy of the
Mode in Neural Machine Translation. arXiv:2005.10283 [cs], May 2020. URL http://arxiv.
org/abs/2005.10283. arXiv: 2005.10283

• Vı́ctor M. Sánchez-Cartagena, Mikel L. Forcada, and Felipe Sánchez-Martı́nez. A multi-
source approach for Breton–French hybrid machine translation. In Proceedings of the 22th
Annual Conference of the European Association for Machine Translation, pages 61–70, On-
line Conference, November 2020

6 Software

Another research output from this workpackage is software.

• WMT19 Gujarati system models and scripts http://data.statmt.org/wmt19 systems/

• Tool for fusing, extending and using language representations github.com/aoncevay/multiview-
langrep

• Code for the improving massively multilingual NMT work https://github.com/bzhangGo/
zero

• Code for the language model prior work github.com/cbaziotis/lm-prior-for-nmt

• Code for the auto-encoding variational NMT work github.com/Roxot/AEVNMT

7 Conclusion

In this document we have reported the progress and future plans for Workpackage 4 Transfer
Learning of the GoURMET project.

We have performed research on the three workpackage tasks identified in the project proposal,
achieving substantial advances in the state of the art in the field of transfer learning for low-resource
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machine translation. Our research was reported in several papers published at top-level academic
conferences, achieving a best paper award and a top position in a scientific evaluation for news
translation system quality.

However, our work is not merely of academic interest. We have applied our techniques to produce
machine translation systems for multiple low-resource language pairs that we have delivered to the
project user partners (BBC and Deutsche Welle). These systems, described in deliverable D5.3,
are currently deployed and are being integrated in the workflow of the user partners.
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Robert Östling and Jörg Tiedemann. Continuous multilinguality with language vectors. In Pro-
ceedings of the 15th Conference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 644–649, Valencia, Spain, April 2017. Association
for Computational Linguistics. URL https://www.aclweb.org/anthology/E17-2102.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. arXiv preprint
arXiv:1912.02762, 2019.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL’02, pages 311–318, Philadelphia, Pennsylvania,
USA, 2002.

Edoardo Maria Ponti, Helen O’Horan, Yevgeni Berzak, Ivan Vulić, Roi Reichart, Thierry Poibeau,
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