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Abstract

This deliverable reports the work conducted within WP3 on structure induction at sentence level
for low-resource neural machine translation (NMT). It focuses on three main tasks: inducing
word alignments, learning structured sentence models, and exploiting the probabilistic frame-
work for better decisions and data-efficient NMT (which replaces one of the initially proposed
tasks, namely, multilingual learning of sentence structure). We report on progress thus far and our
priorities for the second half of the project.
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1 Introduction

WP3 provides scientific advances in machine translation for the low-resource setting by developing
machine learning algorithms which induce and exploit structured representations of sentences.
WP3 has four main goals:

• Develop methods which explicitly model inter-dependencies between terms in the source
and target sentences as latent alignments, and induce them in such a way as to be beneficial
for the translation quality;

• Develop algorithms which induce structured representations of sentences from parallel and
monolingual data;

• Develop both NMT methods which exploit these induced representations and methods which
optimise for translation and structure induction in an end-to-end fashion.

• Induce sentence structure relying on data for multiple language pairs simultaneously, thus,
selectively transferring knowledge about linguistic structure from resource-richer languages
to resource-poorer ones.

To cover these goals we originally proposed 3 tasks, namely,

T3.1 Modelling latent alignments (Section 2);

T3.2 Structured sentence models (Section 3);

T3.3 Multilingual learning for sentence structure.

Task T3.3 turned out too closely-related to T3.2 as well as to the overall goals of work package
4. Learning sentence-level structure is the main objective of T3.2, and T3.3 does not seem to
require new methodology as far as modelling with latent variables goes. The technical advances
it does require concern transfer learning more than anything else, which is within the scope of
WP4. Besides, as originally formulated, it depended too heavily on T3.2, thus preventing parallel
progress in both fronts. We therefore changed the scope of T3.3 from multilingual learning for
sentence structure to

T3.3 Probabilistic neural machine translation (Section 4)

whose goals revolve around exploiting and advancing implications of the probabilistic formulation
of neural machine translation models, in particular, where this will lead to advances in low-resource
settings. See Section 4 for a complete motivation including goals and progress thus far.

The first half of the project has led to considerable progress in all three fronts of the work package
as well as cross-package collaborations. The work reported here has appeared in conference pub-
lications, MSc theses, pre-prints under review, and has led to the release of open-source software
and data. This document is an overview of this research output, in particular, it highlights research
challenges and progress due to GoURMET.
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2 Task 3.1 – Modelling Latent Alignments

Proposal highlights:

• induce alignments as latent variable jointly with a simpler NMT system (one that makes
stronger independence assumptions than standard NMT does);

• overcome intractability with variational inference and investigate both discrete and approx-
imately discrete alignments;

• combine alignments with NMT aiming at improved translation quality.

Summary of work done: We present an unsupervised neural model for alignment that builds
upon the simple factorisation of a classic statistical model, namely, the IBM model 1 (Brown et al.,
1993). This model can be thought of as a very simple NMT model which generates the target sen-
tence one word at a time, each time translating an independently selected subset of source tokens.
Because the space of subsets grows exponentially large with source sequence length, we employ
variational inference learning via approximate marginalisation with Monte Carlo (MC) methods.
We investigate both discrete and approximately discrete alignments and find that by employing
some variance reduction techniques discrete alignments are viable and in fact outperform approx-
imately discrete ones. Whereas the model shows to be a good alignment model, initial attempts at
combining it with a complete NMT model did not lead to improved translation quality. We are cur-
rently developing alternative uses of this model for other work packages, for example, as a model
of sentence alignment (in WP1) and for unsupervised discovery of sub-word units (in WP2).

2.1 Many-to-Many Alignments

Whereas alignments are no longer used in modern neural machine translation systems, they still
can serve their purpose in low-resource tasks. As alignment models are often much simpler than
translation models, they might be simpler to train in low-resource scenarios than NMT systems.
The resulting alignments could potentially be used to improve NMT systems with applications
such as: supervising the attention component (Liu et al., 2016); supervising every decision from
segmentation, to reordering, to phrase translation (Alkhouli et al., 2016; Alkhouli and Ney, 2017);
auxiliary supervision (in a multi-task learning fashion) to promote better translation while keep-
ing attention weights interpretable as alignments (Garg et al., 2019); aligning embedding spaces in
unsupervised NMT (Artetxe et al., 2019). Alignments are central to SMT (Koehn et al., 2003; Chi-
ang, 2005), and in some low-resource scenarios, SMT might still work better than NMT, provide
soft constraints to unsupervised NMT (Ren et al., 2019), or at least contribute valuable synthetic
data to train NMT models (Burlot and Yvon, 2018).1

Traditional non-neural alignment models (Brown et al., 1993; Och and Ney, 2003; Dyer et al.,
2013) make some strong assumptions that simplify their training. Most notably, IBM models 1 and
2, the basis of the most powerful alignment models, assume that target words are generated from
at most a single source word. Whereas this makes training feasible, this is by no means a correct
assumption about language. It is easy to come up with a counter-example: “The dog sleeps”

1 For example, SMT was used to produce synthetic data to some of our own systems (e.g., English-Amharic and
Amharic-English).
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translates to Romanian into “Câinele doarme”. In Romanian the definite article “le” is added as a
postfix to the noun for dog, “câine”. “Câinele” cannot be explained by “The” or by “dog” alone,
but only by the phrase “The dog”. Some neural alignment models (Wang et al., 2018; Rios et al.,
2018) do not relax these strong assumptions. Others do, but are based on components that do not
easily integrate in other probabilistic models (Legrand et al., 2016) or target high-resource settings
(Garg et al., 2019; Zenkel et al., 2020).2

In this research, we seek a model that is lightweight, that performs well without requiring large
architecture blocks, such as a Transformer (Vaswani et al., 2017) encoder or decoder, and that
produces many-to-many alignments. Therefore, we formulate a model where target words can be
generated from any number of source words. We use neural networks to learn mappings from a
selection of source tokens to a distribution over target words, and to select the source tokens from
which a target word is generated. To achieve this we introduce latent alignment bit vectors, where
each target word is augmented with a latent bit vector indicating which positions in the source
sentence are responsible for generating that target word. The likelihood of the data is the marginal
of this latent variable model, i.e.,

p(y|x, θ) =

|y|∏
j=1

∑
a j∈{0,1}|x|

p(a j|x, y< j, θ)p(y j|x, a j, θ) (1)

where we denote the source sequence as x of length |x|, the target sequence as y of length |y|, any
individual target words as y j and its corresponding bit vector as a j, and the sequence 〈y1, . . . , y j−1〉

as y< j. Neural network parameters are contained in θ. A priori we can give preference to certain bit
vectors, we can give preference to how many source words explain a target word on average, or we
could even prefer that multiple source words selected should ideally be adjacent. In experiments
we currently only experiment with independent alignment bits that have a fixed or source sequence
dependent prior.

In order to estimate parameters of the model in Equation 1, we need to compute the marginalisation
over all possible bit vectors. The number of bit vectors is exponential in source sequence length
and therefore generally intractable. At test time we are interested in predicting alignments using
the posterior distribution p(a j|x, y), computing this is intractable due to the same intractable sum-
mation. For this reason we resort to variational inference (Jordan et al., 1999; Blei et al., 2017),
giving us an approximate posterior with its own set of parameters λ, and a tractable lower-bound
on the logarithm of Equation 1. We then optimise this lowerbound with respect to both sets of
parameters, namely, θ and λ. In order to compute gradients for the approximate posterior λ, we ex-
periment with the REINFORCE estimator (Williams, 1992), and with relaxing the discrete bits to
a continuous-discrete mixture using the HardKuma distribution (Bastings et al., 2019) developed
in this work package (see Section 3.1.2).

As a baseline we implement a neural variant of IBM 1, where the translation component of IBM 1
is parameterised by a neural network. Because in IBM 1 we can exactly marginalise the alignments
in time O(|x| × |y|), parameter estimation via EM algorithm (Dempster et al., 1977) is possible. As
we have introduced neural components, we use gradient-based training which is more convenient
to use with standard auto-grad packages. We also report fast-align (Dyer et al., 2013), a strong

2 The closest to low-resource setting considered in recent literature is the case of English-Romanian, where about half
a million sentence pairs are available. English-Amharic, one of the language pairs we are interested in, counts with
only 50 thousand sentence pairs.
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model prior AER

neural IBM 1 Cat( 1
M , . . . ,

1
M ) 34%

HardKuma HardKuma(0.3, 1) 30%
REINFORCE Bernoulli

(
1

1+M

)
29%

+ baselines 27%
+ self-critic 27%
+ PPO 27%

fast-align Dir(α) 20%

Table 1: Alignment error rate for the baseline model (neural IBM 1) and several variants of our model.
HardKuma uses a HardKuma approximate posterior whereas REINDORCE uses a Bernoulli
approximate posterior together with REINFORCE. We only show the prior that worked best
in our experiments.

target dumbi boodimzi zem .

source dum@@ bi boo@@ dim@@ zi zem .

Figure 1: An example sentence pair from the artificial data we generated to demonstrate the capacity
of our model. The task is to merge words ending on “@@” into a single compound word.
This task requires target words to align to potentially multiple source words by design.

(non-neural) reparameterisation of IBM 2 which employs a sparse Dirichlet prior for lexical dis-
tributions. Note that while stronger neural alignment models do exist, at this point our goal is to
investigate whether we can induce many-to-one alignments with a small neural model trained end-
to-end, not at all whether we can outperform a pipeline of models and symmetrisation strategies.

Small scale experiment We use a small English-French dataset, the sentence-aligned Hansards
(Germann, 2001), containing about 230, 000 thousand observations. For this pair, we have a small
test set annotated with manual alignments, the NAACL English-French hand-aligned data (Mi-
halcea and Pedersen, 2003), that we can use to evaluate the unsupervised models. We compare
induced alignments to gold-standard while for various gradient estimation techniques and priors
in terms of alignment error rate (AER; Och and Ney, 2000). Table 1 summarises the results. We
only show the prior settings that worked best in our experiments. We see that our model in general
has an edge over the baseline, both for the HardKuma as well as the REINFORCE strategy. We
see that reducing the variance of the REINFORCE estimator through standard baselines (Williams,
1992) is beneficial. Further attempting to reduce variance using a greedy self-critic baseline (Ren-
nie et al., 2017) and proximal policy optimization (PPO; Schulman et al., 2017) does not seem to
further improve results.

Use in NMT Our first attempt to combine this alignment component with a complete NMT sys-
tem is based on multi-task learning (Caruana, 1997), whereby we have two models explain the data
differently while sharing some of their components, in this case, the encoder and the embedding

page 9 of 58



GoURMET H2020–825299 D3.1 Initial Progress Report on Learning Structural Models

model prior AER

neural IBM 1 Cat( 1
M , . . . ,

1
M ) 42%

fast-align Dir(α) 35%
our model Bernoulli

(
2

1+M

)
8%

Table 2: Alignment error rates on the toy data demonstrated in Figure 1. Our model is trained with
REINFORCE and baselines.

matrices. We model English→Turkish data using an attention-based NMT model (Bahdanau et al.,
2015) and the alignment model developed in this section. Unfortunately, we have not yet observed
appreciable improvements, thus other integration strategies will have to be investigated.

Potential of many-to-many alignments We now demonstrate with a toy experiment the po-
tential of the model in discovering groups. We generate artificial data in which the task is to merge
groups of words together. Every target word is thus, by design, generated from potentially many
source words. We demonstrate the task in Figure 1. Whereas this task is quite artificial and acts as
to demonstrate the potential of our model, the concept of many-to-many alignments is not, as we
have shown before in an example for English-Romanian. We compare neural IBM 1, our model
and fast-align in Table 2. We see that our model is close to solving the task, whereas neural IBM 1
and fast-align miss many alignments. In fact, modelling groups like that is beyond the capabilities
of IBM 1 and 2 style models, requiring a pipeline of models and symmetrisation heuristics.

Discussion We see potential for alignment models, especially so when struggling with lack of
resources. Moreover, we see great potential in neural end-to-end alignment models. Whereas clas-
sic statistical models struggle with feature-rich parameterisations, neural networks are extremely
flexible in that regard. Consider for example the case of morphologically complex languages,
complex features such as long-distance agreement and sub-word features are arguably valuable
and hard to learn with little data. Recent advances in neural variational inference allow us to con-
sider classes of models that would render classical approaches intractable. Still, moving forward
in the project, we have chosen to de-prioritise this direction in favour of another with higher im-
pact (see Task 3). We will still investigate a few more options for integration, but we do not plan
to investigate new models. The ideas developed here are not being discarded, however. We have
recently realised an opportunity for the model presented here, and other models of this kind, in the
context of data collection (work package 1), where many-to-many sentence alignment has proven
rather challenging. This model may also find space in work package 2, in the context of learning
to segment words into sub-word units.
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3 Task 3.2 – Structured Sentence Models

Proposal highlights:

• we aim to develop NMT models that induce structured representations at sentence level (e.g.,
trees, graphs, latent factors);

• techniques to be investigate include discrete structure via REINFORCE, continuous relaxa-
tions, and iterative refinement;

• we will develop joint models representing structure of both source and target sentences, with
the goal of achieving better data efficiency;

• we will exploit supervised tree banks for the resource-rich language (English in our case);

• as parallel data is scarce in the lower-resource setting, we will combine parallel and mono-
lingual corpora.

Summary of work done: we report progress in three fronts, one focused on learning with un-
observed variables (Section 3.1), this aims at advancing technology that will enable latent structure
in NMT, another focused on inducing sentence-level structure within NMT (Section 3.2), and the
last one focused on making use of context beyond the sentence level (Section 3.3). In the first
front, we (i) improve variational inference for text generation problems by addressing a common
failure mode of deep latent variable models known as posterior collapse, (ii) develop sparse re-
laxations to binary random variables that admit unbiased reparameterised gradients, (iii) improve
variational inference for language models with latent syntactic structure, and (iv) improve vari-
ational inference for discrete combinatorial structure. In the second front, we (i) develop a joint
generative model that induces latent representations of sentence pairs, and (ii) build discrete latent
factors into this model. In the last front, we (i) unify sentence-level and document-level translation,
(ii) create evaluation resources and present a systematic evaluation of alternative architectures for
representing global context, and (iii) investigate the effect of sub-document information.

3.1 Latent Structure in Neural Network Models

Unobserved variables lead to challenges in statistical learning, and, in particular, in deep learning,
where approximate marginalisation of unobserved (latent) variables pose challenges for compu-
tation of gradients. The building block of deep latent variable models is the variational auto-
encoder (VAE; Kingma and Welling, 2014; Rezende et al., 2014), a probabilistic latent variable
model parameterised by neural networks. While VAEs have great potential, they have two big
limitations. When parameterised with strong neural network architectures, as we typically want in
text generation applications, they fail to exploit latent variables, this is known as posterior collapse
(Bowman et al., 2016; Alemi et al., 2018). VAEs are trained via reparameterised gradients, that
is, gradient estimates obtained by a differentiable sampling procedure. Unfortunately, differenti-
able sampling is not possible with discrete random variables, and therefore, one needs to either
employ a continuous relaxation for which differentiable sampling is possible, or employ a general
class of estimators known as score function estimator (Rubinstein, 1986; Williams, 1992), which
is cursed with high variance (Paisley et al., 2012; Ranganath et al., 2014). In this section we look

page 11 of 58



GoURMET H2020–825299 D3.1 Initial Progress Report on Learning Structural Models

into advancing machine learning technology around these challenges. We start by addressing pos-
terior collapse for deep continuous latent variable language models, and then turn to discrete and
combinatorial latent variables.

Summary of contributions:

• Strategies to address posterior collapse in deep latent language models;

• A novel distribution which admits unbiased and differentiable sampling of sparse relaxations
to binary random variables;

• Variational posteriors over context-free forests using conditional random fields;

• Deterministic gradients via tractable marginalisation of categorical and combinatorial latent
variables.

3.1.1 Avoiding Posterior Collapse in Latent Variable Models

The variational auto-encoder (VAE; Kingma and Welling, 2014; Rezende et al., 2014) is one of
the most important building blocks of deep latent variable models (i.e., probabilistic latent variable
models parameterised by neural networks). In a latent variable model of the kind p(z)p(x|z, θ), the
likelihood p(x|z, θ) has the potential to exploit structure in latent space, that is, it has the potential
to correlate specific regions of the latent space to specific patterns in data space. Such potential
is precisely what we seek to exploit. For example, we hope to be able to control generations
from that space, or we hope to cluster observations that are similar and thus leverage incomplete
supervision. For any of that to happen, we need to learn a joint distribution that actually uses the
latent variable for something. Learning a VAE requires approximating the model’s true posterior
distribution p(z|x, θ) with a tractable variational approximation q(z|x, λ) and we typically train both
in tandem. The posterior distribution, or its approximation, can be thought of as a form of interface
between the model and the user. Queries to this posterior can reveal neighbourhood in data space
and insights into what generalisations the model makes.

In text generation tasks, such as machine translation, the generator p(x|z, θ) is typically paramet-
erised by a very powerful neural network architecture, such as an autoregressive recurrent neural
network (Hochreiter and Schmidhuber, 1997; Cho et al., 2014) or Transformer (Vaswani et al.,
2017). Unfortunately, maximum likelihood estimation does not express a preference as to whether
the observation x should be modelled by mapping patterns to latent space and back or simply by
mapping from structure internal to the observation. For example, rather than predicting the next
word xi from a combination of z and the prefix of observations x<i, such a model often conditions
on x<i alone. On the one hand this may seem counter-intuitive, on the other hand, recall that x<i

is a real observation sampled from the data, unlike z, which is sampled from a distribution under-
going training, and, above all, x<i is surely correlated with xi, since both co-occur in the sentence
x sampled from the data, whereas z is not correlated with neither x<i nor xi unless the generator
p(xi|z, x<i, θ) decides to do so. This leads to a phenomenon known as posterior collapse, a qual-
itatively bad local optimum in maximum likelihood estimation (Alemi et al., 2018), whereby the
estimated joint distribution exploits no structure in latent space. This is diagnosed by noticing that
the true posterior is independent of the data, and thus has “collapsed” to the prior. As we cannot
infer the true posterior, we employ a proxy diagnostic tool, namely, the expected KL divergence
EX[KL(q(z|x, λ)||p(z))], also known as rate. When this quantity is estimated to be approximately
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0, we are confident that x is modelled independently of z. It is important to remark that collapsed
models are not bad as such, they compete fairly (possibly rival) non-collapsed models in terms of
likelihood. There is nothing objectively bad—as far as likelihood is concerned—about a collapsed
model. It is our desire to exploit structure in latent space to accommodate appreciable generalisa-
tions or patterns in data space that is left unattended. And with it, all the applications we envisioned
for the latent space (such as controllable generation or semi-supervised learning).

MDR In Pelsmaeker and Aziz (2020), presented at ACL 2020, we review a number of strategies
that combat posterior collapse and introduce a few, most notably, minimum desired rate (or MDR).
MDR uses Lagrangian relaxation to find models that satisfy a constraint on the rate. We show
that by keeping the rate well above 0 we help the optimiser find generative models that are not
collapsed. The idea is to optimise the evidence lowerbound (ELBO) subject to a minimum rate r:

max
θ,λ
EX

[
Eq(z|x,λ)

[
log p(x|z, θ)

]
− KL(q(z|x, λ)||p(z))

]︸                                                       ︷︷                                                       ︸
ELBO(θ,λ)

s.t. EX
[
KL(q(z|x, λ)||p(z))

]
> r .

(2)

Because constrained optimisation is intractable, we optimise the Lagrangian (Boyd et al., 2004)

Φ(θ, λ, u) = ELBO(θ, λ) − u(r − EX[KL(q(z|x, λ)||p(z))]) (3)

where u ∈ R≥0 is a positive Lagrangian multiplier. We define the dual function

φ(u) = max
θ,λ

Φ(θ, λ, u) (4)

and solve the dual problem minu∈R≥0 φ(u). Local minima of the resulting min-max objective can
be found by performing stochastic gradient descent with respect to u and stochastic gradient ascent
with respect to θ, λ. In our ACL paper we also discuss in detail how MDR relates to existing tech-
niques aimed at addressing the same problem. We report results on language modelling for Eng-
lish. Here we comment on only a subset of the experiments involving the Penn Treebank dataset
(PTB; Marcus et al., 1993). Table 3 shows that we can de-collapsed VAEs that employ different
priors: Gaussian (N/N), mixture of Gaussians (MoG/N), and the strong VampPrior (Tomczak
and Welling, 2018), which we adapt for language modelling. Perplexity gives an indication of the
model’s performance and active units is an indication that the model is not collapsed (0 would
mean collapsed). Similarly, a non-zero rate indicates the model is not collapsed. The VAEs in the
Table evaluate to R = 5 because they were optimised to achieve that rate. Without MDR those
models would have collapsed, as we show in the paper. Figures 2 and 3 illustrate samples from
non-collapsed VAEs. The former shows samples from the model’s own prior distribution, while
the latter shows samples from the hyperplane connecting the posterior distributions of two given
data samples. In a collapsed model, we would not be able to appreciate any relationship amongst
those samples.

MDR has been an important development. Since its introduction for language modelling, we
have made MDR part of most our VAE models. For example, in D2.1 we present a model for
generation of inflected wordforms, where MDR was shown to be crucial. It is also part of other
models presented in this deliverable and has been integrated in our deep latent variable translation
model (see Section 3.2.1). To make it accessible to a larger audience we have packed it as a simple
plug-and-play module in torch.3

3 https://github.com/EelcovdW/pytorch-constrained-opt.git
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Model Distortion ↑ Rate ↓ Perplexity ↓ Active Units ↑

RnnLm - - 84.5 -
N/N 103.5 5.0 81.5 13
MoG/N 103.3 5.0 81.4 32
Vamp/N 103.1 5.0 81.2 22

Table 3: Performance on the PTB test set for different priors (N , MoG, Vamp).

Sample Closest training instance TER

For example, the Dow Jones Industrial Average
fell almost 80 points to close at 2643.65.

By futures-related program buying, the Dow
Jones Industrial Average gained 4.92 points to
close at 2643.65.

0.38

The department store concern said it expects to
report profit from continuing operations in 1990.

Rolls-Royce Motor Cars Inc. said it expects its
U.S. sales to remain steady at about 1,200 cars
in 1990.

0.59

The new U.S. auto makers say the accord would
require banks to focus on their core businesses
of their own account.

International Minerals said the sale will allow
Mallinckrodt to focus its resources on its core
businesses of medical products, specialty chem-
icals and flavors.

0.78

Figure 2: Samples from a sentence VAE with an MoG prior trained via MDR: we sample from the prior
and decode greedily. We also show the closest training instance in terms of a string edit
distance, this allows us to verify that the model is not simply memorising data it has seen.
The fact that greedy samples are not always the same demonstrates that the generator is
sensitive to the latent space.

Weak generators As we explained, VAEs collapse because strong generators have no incentive
to use latent space to accommodate variability in data space. This begs the question, why don’t
we use weak generators then? Weak generators are models that do not have access to all of the
structure present in the data, for example, a bag-of-words generator cannot capture much more than
marginal word frequencies. It certainly cannot model intricate dependencies due to collocations,
morphological agreement, or word order. In fact, weak generators do not collapse as previous work
has shown (Zhao et al., 2017; Semeniuta et al., 2017; Park et al., 2018). The problem with weak
generators is that they do not lead to fluent text either. Recall, we want to have good generators
p(x|z, θ) and, in addition, be able to explore posterior queries q(z|x, λ) for something interesting
like data augmentation, clustering in terms of structural aspects of the data such as syntax and
morphology. Access to these posterior queries at the expense of good generations is of little use.
With our work on MDR we learnt that we can tackle posterior collapse by imposing a lowerbound
on the model’s rate. While that is interesting and has been shown to indeed correlate x and z, it
remains quite beyond our control how this potential is exploited by the generator. In this research
we aim to shape this. Moreover, we aim not to impose a lowerbound on rate directly, but rather
impose constraints that promote z being predictive of a particularly useful aspect of the data. Our
constraints are based on weak generators, for they are known not to suffer from posterior collapse.
Indirectly, not only we promote higher rates, since weak generators lead to higher rates, but also
target this rate to accommodate the view of the data the weak generator exposes. As the main
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The inquiry soon focused on the judge.
Thejudgedeclinedtocommentonthefloor.
Thejudgewasdismissedaspartofthesettlement.
Thejudgewassentencedtodeathinprison.
TheannouncementwasfiledagainsttheSEC.
TheofferwasmisstatedinlateSeptember.
TheofferwasfiledagainstbankruptcycourtinNewYork.
The letter was dated Oct. 6.

Figure 3: Latent space homotopy from a sentence VAE trained via MDR. Note the smooth transition
of topic and grammatically of the samples.

model remains a strong generator, this should not hurt performance on the main downstream task.
Again, we formalise this in the language of constrained optimisation:

max
θ,λ
EX

[
Eq(z|x,λ)

[
log p(x|z, θ)

]
− KL(q(z|x, λ)||p(z))

]︸                                                       ︷︷                                                       ︸
ELBO(θ,λ)

s.t. EX

[
Eq(z|x,λ)

[
log p(x|z, φv)

]]
> ρv for v = 1, . . . ,K ,

(5)

where we optimise the ELBO of the main generative model, which employs a strong gener-
ator p(x|z, θ), subject to meeting pre-specified performance levels with K weak generators, each
based on a VAE p(z)p(x|z, φv). This is an ongoing collaboration between UVA and UA, here we
present only preliminary results. Figure 4 shows VAEs trained with free bits (FB; Kingma et al.,
2016), which can be thought of as a simple form of MDR without Lagrangian relaxation, and
our new strategy. At this point we have experimented with: bag-of-words (BoW) decoders, non-
autoregressive decoders (NonAR; Ziegler and Rush, 2019),4 and a combination of the two. As
we can see our models are not at all collapsed, and that without the need for MDR. In particular,
NonAR performs quite well (lower-left corner of the plots) in terms of different notions of perplex-
ity. Preliminary analysis suggests that generations from these models differ considerably in terms
of statistics of the data, such as length, unigram frequencies, bigram and skip bigram frequencies.5

This suggests we are managing to use the latent space for specific purposes, unlike with techniques
such as FB and MDR which do not target any specific use of the latent space.

This is another important development, with careful choice of weak generators we can induce
structured representations via a continuous space, which simplifies training. We are currently
investigating weak generators that are sensitive to word order statistics. Being able to shape the
latent space of a VAE has implications across work packages, for example, in D1.2 this helps with
data augmentation.

3.1.2 Differentiable and Sparse Relaxations to Binary Random Variables

Latent variable models learn to correlate observed variance in a rather complex data space to
unobserved variance in a simpler (often lower-dimensional) latent space. This machinery is yet
4 Like BoW, these models do not condition on a history of already generated tokens, unlike BoW, these models use a

product of different distributions, one per generation step, while BoW uses the same distribution for all generation
steps.

5 This uses the methodology developed in Section 4.1.
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Figure 4: Perplexity of sentence VAE trained to also achieve high likelihood with weak generators.
Forward perplexity (x-axis): lower means the generated data cover the gold-standard well.
Reverse perplexity (y-axis): lower means the gold-standard data covers the generated data
well. Held-out perplexity (z-axis): lower means the model explains gold-standard data well.
In brackets we show the rate of the main model at the end of training (0 indicates a collapsed
model).

more appealing where the unobserved variables are discrete. That is because discrete variables are
more amenable to interpretation and can be used to inject certain inductive biases into our models.
For example, a categorical variable may be thought of as a cluster, a collection of binary variables
may be thought of as a description in terms of attributes. With some amount of supervision, we
can go beyond making analogies and learn models that use discrete variables in exactly those ways
(see for example Task 3 in D2.3, where we semi-supervise a discrete latent variable model to learn
morphological attributes of complex word forms). Training an interesting latent variable model
almost always requires approximating crucial intractable quantities, such as marginal likelihood or
the evidence lowerbound, via sampling. Training deep learning models, on the other hand, requires
computing the gradient of those intractable quantities with respect to the parameters of the model.
Sampling and gradient computation are often in conflict, and where we are interested in discrete
latent variables our options are greatly reduced.

Sampling discrete random variables is a non-differentiable operation due to the cumulative distri-
bution function (cdf) of discrete variables being discontinuous. Gradient estimation can still be
performed, but not through low-variance path derivatives (Kingma and Welling, 2014; Rezende
et al., 2014), rather via a more general class of estimators known as the score function estimator
(SFE; Rubinstein, 1986), or REINFORCE (Williams, 1992). Whereas SFE is unbiased it suf-
fers from high variance requiring variance reduction techniques to be useful (Paisley et al., 2012;
Ranganath et al., 2014). An alternative is to turn to continuous relaxations of discrete variables
for which reparameterised gradients are possible (Maddison et al., 2017; Jang et al., 2017), these
relaxations however either sacrifice sparse (discrete) samples or sacrifice unbiased gradients by
making use of the straight-through estimator (STE; Bengio et al., 2013).

In Bastings et al. (2019), presented at ACL 2019, we introduce the HardKuma distribution, a relax-
ation of a Bernoulli distribution that supports continuous and discrete outcomes. This distribution
supports outcomes in the closed interval [0, 1], but with non-zero mass for sampling exactly 0 and
exactly 1. Crucially, sampling is performed via a differentiable reparameterisation and without
biased estimators. The distribution is based on a stretch-and-rectify technique proposed by Louizos
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et al. (2018), whereby one smooths discontinuous gradients via stochasticity. Figure 5 illustrates
how HardKuma distributions are constructed. We refer to the published paper for details such as
density assessments and reparameterised gradients.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5
Kuma(0.5, 0.5)

SKuma(0.5, 0.5, -0.1, 1.1)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1
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0.3

0.4

0.5

0.6

0.7

0.8

0.9
HardKuma(0.5, 0.5, -0.1, 1.1)

Figure 5: We stretch a base distribution (red solid line) to include 0 and 1 in its support (blue dashed
line). We then integrate over the outside regions (green shaded area) collapsing their
masses into two point masses, one at 0 and one at 1 (black solid bars). The resulting
distribution (right) is a mixture of a truncated density defined over (0, 1) and point masses at
{0, 1}.

Extensions We also developed a relaxation of a Beta-Bernoulli model, which allows for sparsi-
fication of Bayesian models, the extension and an application to text classification appears in
Murady (2020)’s MSc thesis. To make our distributions accessible to a wider audience, we have
extended the library torch.distributions with a general stretch-and-rectify interface as well
as with the HardKuma distribution.6

Applications In Bastings et al. (2019) we demonstrate the effectiveness of HardKuma by com-
paring it to SFE (REINFORCE) in the context of interpretable text classifiers, where the HardKuma
is used to learn latent rationales for classification (Lei et al., 2016).7 Since its introduction we
have also successfully used the HardKuma in our alignment model of Section 2.1 as well as
to learn approximately binary latent factors in a joint generative translation model in Section
3.2.2. In work package 2, HardKuma samples power a model of morphological reinflection and a
morphologically-aware NMT decoder (Ataman et al., 2020).

6 https://github.com/probabll/dists.pt
7 Code available from https://github.com/bastings/interpretable predictions.
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3.1.3 Syntactic Language Models

Language models are trained to estimate the probability p(xi|θ, x<i) of the next word xi given a
sequence of already generated words x<i.8 Nowadays these models are parameterised by recurrent
(Hochreiter and Schmidhuber, 1997; Cho et al., 2014) and Transformer (Vaswani et al., 2017)
architectures and are the state of the art in density estimation for text (Melis et al., 2018). There
is something common to all of these models, they model sentences from left-to-right disregarding
the hierarchical nature of language (Chomsky, 1964). Hierarchical structure is generally compact
and lead to data-efficient generalisation. Learning hierarchical structure without any supervision,
on the other hand, is generally very hard and cursed with theoretical limitations (Klein, 2005).
Informing models with linguistic knowledge is something more realistic.

RNNG Dyer et al. (2016) introduce the recurrent neural network grammar (RNNG), a language
model that draws observations from the marginal of a joint distribution over sentences and their
syntactic (PTB-style) trees. The model is recurrent, but not along the sentence, rather along its
syntactic derivation. Due to its generative formulation, the RNNG can be used in absence of
syntactic trees, but training without syntactic trees is difficult, therefore, in its original formulation,
the model was trained with complete syntactic supervision. In this research we investigate whether
we can train the RNNG semi-supervisedly. Should this be possible, we might be able to address
low-resource languages by means of producing some small amount of supervision.9

Formally, the RNNG assigns probability

p(x|θ) =
∑

t

p(x, t|θ) =
∑

t:yield(t)=x

|t|∏
i=1

p(ti|t<i, xπ(i), θ) (6)

to a sentence x, where the summation is over all trees whose yield is the given sentence. Each
tree corresponds to a sequence of actions by a transition-based parser whose controller is paramet-
erised by a stack-LSTM (Dyer et al., 2015). Training the model via gradient-based optimisation
is straightforward as long as we have an oracle, for example a labelled observation from the Penn
Treebank (PTB; Marcus et al., 1993):

arg max
θ

∑
x,t∼DPTB

log p(x, t|θ) . (7)

After training, the model can be used for generating sentences (along with their syntactic trees), or
to assess the likelihood of a given sentence (or dataset). For the latter, we need to approximate the
marginalisation in (6), which Dyer et al. (2016) do via importance sampling

p(x|θ) =
∑

t

q(t|x, λ)
p(x, t|θ)
q(t|x, λ)

MC
≈

1
S

S∑
s=1

p(x, t(s)|θ)
q(t(s)|x, λ)

(8)

using S trees drawn from the independently trained importance distribution q(t|x, λ). The import-
ance distribution is itself an RNNG, though trained discriminatively as a parser:

arg max
λ

∑
x,t∼DPTB

log q(t|x, λ) . (9)

8 Masked language models (Devlin et al., 2019) are also called language models but they cannot be used to assess
likelihood nor generate samples without considerable work and several approximations (Wang and Cho, 2019).

9 Transferring supervision automatically from English might give us an inexpensive starting point.
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CRF proposal We introduce a simpler proposal distribution q(t|x, λ), namely, a conditional ran-
dom field (CRF; Lafferty et al., 2001) parser trained to maximise likelihood of labelled PTB ob-
servations. CRFs enjoy certain analytical results that are convenient for a parser, for example, it is
tractable to search for the best parse tree, and for a proposal distribution, for example, entropy is
available in closed-form. An RNNG parser is not amenable to exact search, and requires greedy
approximations, as a proposal it can only yield noisy Monte Carlo estimates of entropy. Our CRF
uses the minimal parameterisation of the margin-based parser of Stern et al. (2017) and because
of that scales much better than the original neural CRF parser by Durrett and Klein (2015). Table
4 shows how our CRF parser compares to others. Note that it outpeforms the RNNG, while still
producing a distribution over parse trees. The margin-based parser outperforms both the RNNG
and the CRF, but that is expected, since it does not need to maintain a representation of the entire
distribution. Next we evaluate the CRF parser as an importance distribution, note that the margin-

Discriminative parser F1

RNNG 88.58
CRF 90.04

Margin-based (Stern et al., 2017) 91.79

Table 4: Parsing performance measured in terms of F1: the RNNG parser returns the tree found by
a greedy approximation to best-tree search, while the CRF parser returns the true highest-
scoring tree.

based parser cannot be used for that. Table 5 shows that the much simpler CRF matches the RNNG
proposal in terms of F1 (parsing performance), but lags behind in terms of importance sampling
estimates. This might be explained by the CRF distributions showing higher entropy, indeed, we
flattened an RNNG distribution after training, thus artificially increasing its entropy, and observed
worse perplexity (see Figure 6).

Semi-supervised learning We can integrate the training of the proposal (a CRF) and of the
generative model (an RNNG) via neural variational inference (Mnih and Gregor, 2014), where we
optimise both components jointly to maximise the evidence lowerbound (ELBO):

Eq(t|x,λ)
[
log p(x, t|θ)

]
+ H(T |x, λ) . (10)

With a CRF proposal, we can compute the second term (the entropy) in closed-form, something
we could not do with an RNNG proposal. The first term requires gradient estimation, we use the

Proposal F1 Perplexity

RNNG 91.1 ± 0.1 108 ± 1
CRF 91.0 ± 0.1 117 ± 2

Table 5: Performance of the language model as a function of type of proposal. Parsing performance is
evaluated in terms of F1: the generative model re-ranks the trees sampled from the proposal.
Language model performance is evaluated in terms of perplexity: samples from the proposal
are used to estimate marginal likelihood. We use 100 samples in both cases.
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Figure 6: Entropy of a CRF distribution compared to that of RNNG distributions. The CRF (green /
middle) shows higher entropy than the RNNG (orange / bottom). We also plot the entropy
of an artificially flattened RNNG (blue / top).

score function estimator (or REINFORCE) and baselines (Williams, 1992) including self-critics
(Rennie et al., 2017). Whereas this formulation showed to improve the performance of the RNNG
as a language model a little, it still turned out rather computationally expensive, which limited our
ability to use large unlabelled data. The dynamic programs necessary to sample from the CRF
proposal and assess the entropy (Goodman, 1999; Li and Eisner, 2009) do not lend themselves
easily to parallelisation in GPUs. Thus we had to resort to online learning with updates based on
very few training instances at a time, which greatly increases the variance of gradients.

The work reported here appears in van Stigt (2019)’s MSc thesis,10 where a much more extensive
syntactic evaluation of the models is also reported. Concurrently, Kim et al. (2019) published a
very similar formulation focused on fully unsupervised learning. One aspect of their design that
allowed it to scale better than ours is that they use binary bracketing grammars. Fixed arity and
a single nonterminal category lead to small grammar constants in essential dynamic programs
such as the inside-outside algorithm (Goodman, 1999) necessary for sampling and computation of
entropy.

Discussion CRFs enjoy properties such as closed-form entropy assessments as well as tractable
dynamic programmes such as Viterbi and k-best (Huang and Chiang, 2005). The latter contributed
to CRFs outperforming RNNGs as parsers, but the higher entropy of CRF distributions at the end
of training made them worse importance sampling distributions. In general, a CRF over n-ary
branching labelled trees remains an expensive object to represent and manipulate, posing chal-
lenges to gradient-based learning and parallel computations with GPUs. This motivated us to look
into making distributions over discrete combinatorial objects more compact such that expensive

10Parser: https://github.com/daandouwe/thesis
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computations could be avoided and such that high-entropy distributions could be made more con-
fident. This is what we investigate in the next section.

3.1.4 Deterministic Gradients via Tractable Marginalisation

Probability distributions over combinatorial spaces are large objects difficult to represent in a com-
putation graph. Difficulties stem from their combinatorial nature preventing representation by enu-
meration and rather requiring packed graph-like representations such as hypergraphs (Klein and
Manning, 2001; Gallo et al., 1993). Moreover, often the structure of these objects depends on a
particular input (for example, different sentences admit different parse trees) and/or the constraints
of the domain (for example, projective dependency trees do not admit crossing arcs) in which case
instantiating the object requires an efficient combinatorial algorithm (Shieber et al., 1995; Koller
and Friedman, 2009). Quantities of interest, such as cumulative probabilities and entropies, require
dynamic programmes that factorise their computation along the packed structure without enumer-
ation (Goodman, 1999). Combinatorial sample spaces being so large also implies that one can
never reason using all assignments at once, often having to resort to unbiased estimates of quant-
ities of interest, such as marginal probabilities and expectation values, via sub-sampling which is
the principle behind Monte Carlo (MC) estimation. Sampling, however, like most selection rules
(stochastic or not) poses challenges to computation of gradients. Altogether, representation, com-
putation, and sampling are clear obstacles to gradient-based learning and parallel computation on
GPUs, which to a great extent are the backbone of deep learning models.

One way to make distributions over such large sample spaces more manegeable is to make them
sparse. That is, not all of the possible structures are assigned non-zero probability. A recent line
of work has developed differentiable sparse mappings (Martins and Astudillo, 2016; Niculae et al.,
2018a; Niculae and Blondel, 2017) that can be used to parameterise sparse probability distributions
over discrete sample spaces. These can be used for non-structured objects, such as categories, but
also, and crucially, for combinatorial objects, such as sequences and trees. This section reports on
a joint effort with researchers from the ERC-funded project DeepSPIN,11 who pioneered differen-
tiable sparse mappings in deep learning as well as their application to NLP (Niculae et al., 2018b;
Peters et al., 2019).12

Gradient-based learning of a deep latent variable model `(x, z; φ), where x is observed (e.g., a
sentence) and z is latent (e.g., a cluster indicator, a collection of binary factors, a dependency
graph, etc.) requires assessing the gradient of the expected value of the loss

Lx(φ) = Eπ(z|x,φ)
[
`(x, z; φ)

]
=

∑
z∈Z

`(x, z; φ)π(z|x, φ) , (11)

with the sum ranging over all possible assignments of the latent variable. For example, VAEs are
optimised via maximisation of the evidence lowerbound, which corresponds to having `(x, z; φ) =

− log p(x, z|θ) + log q(z|x, λ) and φ = θ ∪ λ for a generative model p(z)p(x|z, θ) and a variational
approximation q(z|x, λ). Solving the expectation in closed-form, means assessing the loss `(x, z; φ)
as many as |Z| times. Consider the case where z is one of K categories (as in a mixture model),
then this involves K assessments of `. In NMT, ` is a large encoder-decoder architecture, and
maintaining K forward passes through it in memory implies reducing batch size by a factor of K.

11https://deep-spin.github.io
12At the time of writing, a manuscript presenting this work is under review (Correia et al., 2020).
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Typical batch sizes vary from 60 to 100, else special hardware is required, imposing a clear limit
on K. Consider the case where z is a binary tree, the number of binary trees is exponential in the
length of the input |x|, and solving the expectation in closed-form is therefore intractable, no matter
how lightweight ` might be (and it seldom is). An alternative to assessing the expectation exactly
is estimating its gradient via Monte Carlo, this takes the form of

∇φLx(φ) = Eπ(z|x,φ)

[
`(x, z; φ)∇φ log π(z|x, φ)

]
(12)

MC
≈

1
S

S∑
s=1

`(x, z(s); φ)∇φ log π(z(s)|x, φ) (13)

with independent samples z(s) ∼ π(z|x, φ). This is known as the score function estimator (SFE;
Williams, 1992), or REINFORCE, an estimator whose variance is too high to be useful and which
requires variance reduction techniques, some rather complex (Tucker et al., 2017; Grathwohl et al.,
2018), and not always very effective. The main advantage of closed-form expectations is that they
have deterministic gradients, that is, backpropagation is directly available, without SFE. Clearly,
there are very few cases of practical interest where expectations can be computed exactly. To
make it possible, we design sparse parameterisations of π(z|x, φ), that is, we make π assign non-
zero probability mass to a small subset of outcomes in the sample space of the latent variable. In
effect, we use sparse mappings, namely, sparsemax (Martins and Astudillo, 2016) and its structured
counterpart, SparseMAP (Niculae et al., 2018a), to parameterise sparse alternatives to Categorical
and Gibbs distributions, the former over atomic categories, the latter over combinatorial objects.
We also propose a new sparse mapping, namely, topk sparsemax, convenient for problems where a
tractable k-best algorithm is known (such as our CRF parser of the previous section).

Applications We investigate the unstructured case as well as the structured case.13 In the un-
structured case we model a dataset of handwritten digits (MNIST; LeCun et al., 1998) and an
emergent communication game (Lazaridou et al., 2017). Here we experiment with mixture mod-
els and semi-supervised VAEs (Kingma et al., 2014). In the structured case we again model the
MNIST as well as a text auto-complete task (Lee et al., 2019). Here we experiment with a latent
factor model, that is, a latent variable model whose latent variable is a collection of binary factors
(Mnih and Gregor, 2014). In the MNIST case, this collection has a fixed size (a binary embedding),
in the auto-complete case, this collection has variable size (determined by the size of the input).
We observe good results across tasks and models managing to achieve the quality of exact mar-
ginalisation with the scalability of MC methods. A few highlights: unstructured models achieve
such levels of sparsity that only about 2 terms in the expectation needed to be evaluated; structured
models required about 10 terms, this is a great reduction of computation effort (from intractably
many to only 10 assessments of the downstream loss) for obtaining noise-free gradients.

Discussion Efficient marginalisation is an important development for this work package. It will
enable working with distributions over combinatorial objects in a much more scalable way. We are
now studying variants of NMT that exploit a combination of ideas presented here and in Section
3.1.3.
13A complete paper about this work is currently under review (Correia et al., 2020).
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3.2 Latent Structure in Neural Machine Translation

We now turn to NMT with some of the tools developed in the previous section. Our main contribu-
tion in this section is a joint generative translation model that allows for induction of sentence-level
generalisation. We start with continuous latent variables and then present our first attempts at dis-
crete ones.

3.2.1 Continuous Latent Structure in NMT

We first consider learning continuous latent structure in bitext. Continuous latent structure poses
fewer challenges in deep learning systems due to the availability of reparameterisations for effi-
cient gradient estimation (Kingma and Welling, 2014; Rezende et al., 2014), at the cost of being
less directly interpretable. In Eikema and Aziz (2019) we introduce AEVNMT: auto-encoding
variational neural machine translation. In AEVNMT, source and target sequences are jointly gen-
erated from a shared continuous latent space. The latent space can capture hidden variation in
translation data. Such variation can be more explicit, such as domain or making a distinction
between back-translated data (Sennrich et al., 2016b) and genuine parallel data, or more implicit,
such as differences in translator or translation direction.

We model a translation pair (x, y) as being generated from the marginal of a latent variable model:

p(x, y) =

∫
p(z)p(x|z)p(y|x, z) dz (14)

The model generates a latent variable z from the prior p(z), followed by a source sentence con-
ditioned on the latent variable (essentially a sentence variational auto-encoder (Bowman et al.,
2016)), followed by a translation generated from the source sentence and the latent variable. Fol-
lowing Kingma and Welling (2014) we impose a multivariate diagonal Gaussian prior on z. We
train our system using variational inference (Jordan et al., 1999; Blei et al., 2017) with reparamet-
erised gradients. When making predictions with the model at test-time, we infer the latent variable
from the source sentence only and condition generations on the mean.

In experiments we test our formulation on English-German data in settings of varying amounts of
variation present in the data: in-domain training, mixed-domain training and training with synthetic
back-translated data. In the mixed-domain and synthetic data settings we expect the latent variable
to capture these larger variations in the data. We find consistent improvements upwards to 0.8
BLEU in almost all settings tested. In later experiments on low-resource Gourmet data, we have
found similar consistent marginal improvements on top of traditional NMT.

However, we do not observe a strong correlation between the amount of perceived variation in the
data and the improvement in BLEU. This begs the question what the latent variable does capture.
Using diagnostic classifiers (Alain and Bengio, 2017; Hupkes et al., 2018) we find that the latent
variable does capture domain quite well (accuracy above 90%), and is predictive of the quality of
back-translations. However, we find that a traditional NMT model’s hidden state performs equally
well on this task. We therefore conjecture that the latent variable captures more nuanced variations
in the data.

As part of this research we have released multiple codebases. A first one to exactly replicate the
experiments in this work,14 and a second one that acts as a more general purpose codebase for deep
14https://github.com/Roxot/AEVNMT
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generative modeling for machine translation.15

Data augmentation Generative models map similarity in data space to a low-dimensional latent
space. This can be used for example to interpolate between different aspects of two sentences. This
is an application of sentence-level generalisation to data augmentation, a line of work UVA and
UA are currently developing under work package 1.

3.2.2 Discrete Latent Structure in NMT

AEVNMT (Eikema and Aziz, 2019) is a deep latent translation model of bitext that captures the
relationship between sentence pairs holistically in a continuous representation. In this section we
present strategies to move on toward discrete generalisations.

Mixture Model The first attempt is a change to AEVNMT’s prior. Rather than a single Gaussian
distribution we attempt to mix K independently parameterised components using a mixture model
prior:

p(z|θ, ω) =

K∑
k=1

ωk p(z|k, θ) . (15)

For posterior inference, we may approximate p(z|x, θ) with a single parameterised component
q(z|x, λ) or with a mixture model

q(z|x, λ) =

K∑
k=1

q(k|x, λ)q(z|k, λ) . (16)

The former is simpler as it has no impact in gradient estimation of the ELBO, whereas the latter
requires either explicit marginalisation of the component assignment or gradient estimation via
MC. For very small K (e.g., less than 10) we may be able to get around with exact marginalisation
by incurring a 10-fold decrease of batch size. For larger values of K, we need MC estimation or
the technique introduced in Section 3.1.4. For now, we have considered the first two options.

VampPrior The VampPrior is a strong prior that approximates the so called aggregated posterior
q(z) =

∑
x∈X p?(x)q(z|x, λ). This aggregated prior is clearly intractable, since the summation ranges

over all possible sentences that may ever exist, and the data distribution p?(x) is unknown. Tom-
czak and Welling (2018) propose an approximation to it based on averaging posterior distributions

p(z|ν) =
1
K

K∑
k=1

q(z|νk, λ) (17)

for K learned pseudo-inputs ν1, . . . , νK . Pseudo-inputs are points in data space, which for Tomczak
and Welling (2018) corresponds to fixed-dimension vectors of real values, since they model pixel
intensities. In NMT, inputs are sequences of tokens, thus the VampPrior is not directly available.
If we see the embedding layer as fixed, we can think of inputs as sequences of token embeddings,
which, except for sequence length, are continuous variables. We propose to sample a number of

15https://github.com/Roxot/AEVNMT.pt
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sequence lengths following a Poisson approximation to the length distribution of the training data,
and have those fixed throughout training. Let `k denote the length of the kth sequence, we define
νk = 〈v(k)

1 , . . . , v
(k)
`k
〉 a sequence of continuous vectors which are seen as parameters of the prior.

Our adaptation to the VampPrior has been presented in Pelsmaeker and Aziz (2020) in the context
of deep language models, where it was amongst the top performing strategies to avoid posterior
collapse.

Latent Factors Mixture models struggle with the problem that as the number of components
increase, each component will be responsible for explaining less and less data. In a low-resource
setting this might be undesirable. A different type of inductive bias is that of a latent feature model
or latent factor model (Ghahramani and Griffiths, 2006), where a collection of discrete (typically
binary) attributes conspire to generate data points, rather than compete to do so (as components do
in mixture models). This can be thought of as a form of unsupervised overlapping clustering. For
K binary factors, the number of possible assignments is 2K , which makes marginalisation clearly
intractable. We investigate two possibilities, score function estimation, and the sparse continuous
relaxation introduced in Section 3.1.2. To use the HardKuma relaxation we need to design a prior,
Murady (2020) introduces the HardUniform prior and derives crucial quantities such as entropies
and KL divergences involving HardKuma and HardUniform distributions. In the binary case, we
modify AEVNMT to have z be D-dimensional with each zk ∈ {0, 1}, in the relaxed case each
zk ∈ [0, 1]. Then the inference model becomes

Zk|x, λ ∼ Bernoulli(γk) γ = g(x; λ) (18)

in the binary case, and

Zk|x, λ ∼ HardKuma(αk, βk) [α, β] = g(x; λ) (19)

in the relaxed base. The parameters γ (or α and β) are predicted by the inference network: D
probability values in the Bernoulli case, and 2 × D positive scalars in the HardKuma case.

Word Alignments We investigate the potential of word alignments to inform AEVNMT’s in-
ference model as a side loss. This corresponds to optimising the objective

Eq(z|x,y,λ)
[
log p(y|z, x, θ)

]
− KL(q(z|x, y, λ)||p(z|θ)) + Eq(z|x,y,λ)

[
log p(y|z, x, φ)

]
(20)

where the last term is an IBM 1 factorisation (Brown et al., 1993) of the probability of the target
sentence given the source (and the latent code). The component is similar to the L2 decoder of
Rios et al. (2018), that is, we transform z to a sequence of |x| Categorical distributions using a
recurrent neural network g(z; φ) and then compute

p(y j|z, x, φ) =

|x|∑
i=1

Cat(y j|gi(z; φ)) . (21)

The idea here is that we may be able to work with a continuous z while making it predictive of
discrete abstractions, word alignments in this case. This would greatly simplify the machinery
necessary for training.
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Findings Mixture models have shown to disentangle some superficial aspects of the data: whereas
some components capture length, other components captured noisy observations.16 In particular,
we noticed that only very few components were active, which suggests that the model struggles
to make use of the additional capacity offered by the mixture model formulation. As for the
VampPrior, while it has been shown to be a powerful prior in other contexts, it introduces many
more parameters that need to be estimated, in particular, K × L × d additional parameters, where
K is the number of pseudo-inputs (e.g., 100), L is the average sequence length (e.g., 20), and d
the dimensionality of word embeddings (e.g., 512). Estimating so many parameters proved chal-
lenging leading us to favour more compact formulations, such as binary factor models. In the
binary factor model, we have a single inference model that parameterises all D factors, rather than
K mostly independent components. So far we have observed factor models perform on par with
Gaussian AEVNMT models. Factors, unlike components in mixture models, seem to remain act-
ive (we have experimented with up to 64 factors). Preliminary analysis of what these unsupervised
factors capture have not shown systematic structure, unfortunately. Next in line for factor models
is to supervise them with noisy linguistic structure available for English (for example, predicted
by a syntactic or semantic parser). Finally, while the neural IBM 1 side loss converges well, with
meaningful word pair associations, we observe no effect on translation performance. This suggests
that the NMT model does not find useful learning signal in lexical alignments, at least not via this
multi-task learning formulation.

Discussion Our future efforts in this line include to exploit noisy supervision potentially avail-
able for English (e.g., predicted linguistic structure) to bias latent factors, and to embrace the meth-
odology put forward in Section 3.1.4. The latter, in particular, enables stable training, and crucially,
is amenable to more complex structure allowing, for example, tighter integration of components
such as an alignment model or a syntactic language model.

3.3 Exploiting Context Beyond Sentence Level

In a realistic scenario, an end user is interested in translating documents, or some other form
of coherent excerpt of text. Given the richness of linguistic phenomena going on in translation
already at the sentence level (arguably even within clauses), it is understandable why so much
research focuses on independent translation of (shorter) segments such as sentences. The growing
need for translation in applied settings where context is crucial is pushing the community to look
into solutions to this modelling challenge (Wang et al., 2017; Miculicich et al., 2018; Voita et al.,
2018; Zheng et al., 2020). Standard NMT factorises the probability of a datasetD

p(D|θ) =

|D|∏
s=1

p(y(s)|x(s), θ) (22)

as if sentence pairs inD were independent of one another. So called document-level NMT models
the probability of a document C = 〈(x(1), y(1)), . . . , (x(|C|), y(|C|))〉

p(C|θ) =

|C|∏
s=1

p(y(s)|x(1:s), y(1:s−1), θ) (23)

16Perhaps this could be used as a tool to help clean crawled data.
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without making the independence assumptions of standard NMT. The likelihood of a dataset of
document pairs then factorises independently over documents, which is far more reasonable. This
does require parallel data annotated with document alignments which poses some challenge in
the low-resource setting. Moreover, architectures that can condition on information beyond the
sentence boundary are typically larger requiring more parameters to be estimated and thus more
data. In this first half of the project, we aimed at addressing limitations of document-level NMT
more generally including model design, evaluation, and impact of finer-grained document-level
annotation.

Summary of contributions:

• we propose a unified treatment of sentence-level and document-level NMT which leads to
improved results in high-resource language pairs;

• we also propose methodology to evaluate document-level NMT with regards to the model’s
sensitivity to document-level linguistic phenomena such as coreference and conduct a sys-
tematic evaluation of existing approaches, again in a high-resource setting;

• we collect parallel data preserving not only document alignment, but also document sub-
structured mined from metadata, and investigate the effects of the latter on document-level
NMT; that includes one of the GoURMET language pairs, namely, Bulgarian-English.

3.3.1 Making the most of context in NMT

Document-level machine translation manages to outperform sentence level models by a small mar-
gin, but thus far have not been widely adopted. In this section we present work (Zheng et al., 2020)
which argues that previous research did not make a clear use of the global context, and we propose
a new document-level NMT framework that deliberately models the local context of each sentence
with the awareness of the global context of the document in both source and target languages.
We specifically design the model to be able to deal with documents containing any number of
sentences, including single sentences. This unified approach allows our model to be trained eleg-
antly on standard datasets without needing to train on sentence and document level data separately.
Experimental results demonstrate that our model outperforms Transformer baselines and previous
document-level NMT models with substantial margins of up to 2.1 BLEU (Papineni et al., 2002) on
state-of-the-art baselines. We also provide analyses which show the benefit of context far beyond
the neighbouring two or three sentences, which previous studies have typically incorporated.

Figure 7 briefly illustrates typical context-aware models, where the source and/or target document
contexts are regarded as an additional input stream parallel to the current sentence, and incor-
porated into each layer of encoder and/or decoder (Zhang et al., 2018; Tan et al., 2019). More
specifically, the representation of each word in the current sentence is a deep hybrid of both global
document context and local sentence context in every layer. We notice that these hybrid encoding
approaches have two main weaknesses:

• Models are context-aware, but do not fully exploit the context. The deep hybrid makes
the model more sensitive to noise in the context, especially when the context is enlarged.
This could explain why previous studies show that enlarging context leads to performance
degradation. Therefore, these approaches have not taken the best advantage of the entire
document context.
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• Models translate documents, but cannot translate single sentences. Because the deep hybrid
requires global document context as additional input, these models are no longer compatible
with sentence-level translation based on the solely local sentence context. As a result, these
approaches usually translate poorly for single sentence documents without document-level
context.

We mitigate the aforementioned two weaknesses by designing a general-purpose NMT architecture
which can fully exploit the context in documents of arbitrary number of sentences. To avoid the
deep hybrid, our architecture balances local context and global context in a more deliberate way.
More specifically, our architecture independently encodes local context in the source sentence,
instead of mixing it with global context from the beginning so it is robust to when the global context
is large and noisy. Furthermore our architecture translates in a sentence-by-sentence manner with
access to the partially generated document translation as the target global context which allows the
local context to govern the translation process for single-sentence documents.

We highlight our contributions:

• We propose a new NMT framework that is able to deal with documents containing any
number of sentences, including single-sentence documents, making training and deployment
simpler and more flexible.
• We conduct experiments on four document-level translation benchmark datasets, which

show that the proposed unified approach outperforms Transformer baselines and previous
state-of-the-art document-level NMT models both for sentence-level and document-level
translation.
• Based on thorough analyses, we demonstrate that the document context really matters; and

the more context provided, the better our model translates. This finding is in contrast to the
prevailing consensus that a wider context deteriorates translation quality.

By the definition of local and global contexts, general translation can be seen as a hierarchical
natural language understanding and generation problem based on local and global contexts. Ac-
cordingly, we propose a general-purpose architecture to exploit context to a better extent.

Figure 8 illustrates the idea of our proposed architecture:

• Given a source document, the encoder builds local context for each individual sentence (local
encoding) and then retrieves global context from the entire source document to understand
the inter-sentential dependencies (global encoding) and form hybrid contextual representa-
tions (context fusion). For single sentence generation, the global encoding will be dynam-
ically disabled and the local context can directly flow through to the decoder to dominate
translation. Feed Forward
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Figure 7: Illustration of typical Transformer-based context-aware approaches (some of them do not
consider target context (grey line)).
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Figure 8: Illustration of the proposed model. The local encoding is complete and independent, which
also allows context-agnostic generation.

• Once the local and global understanding of the source document is constructed, the decoder
generates target document by sentence basis, based on source representations of the current
sentence as well as target global context from previous translated history and local context
from the partial translation so far.

What Does Model Learn about Context? A Case Study. Furthermore, we are interested in
what the proposed model learns about context. In Figure 9, we visualise the sentence-to-sentence
attention weights of a source document based on segment-level relative attention. As shown in
Figure 9, we find very interesting patterns (which are also prevalent in other cases): 1) first two
sentences (blue frame), which contain the main topic and idea of a document, seem to be a very
useful context for all sentences; 2) the previous and subsequent adjacent sentences (red and purple
diagonals, respectively) draw dense attention, which indicates the importance of surrounding con-
text; 3) although sounding contexts are crucial, the subsequent sentence significantly outweighs
the previous one. This may imply that the lack of target future information but the availability of
the past information in the decoder forces the encoder to retrieve more knowledge about the next
sentence than the previous one; 4) the model seems not to care about the current sentence. Prob-
ably because the local context can flow through the context fusion gate, the segment-level relative
attention just focuses on fetching useful global context; 5) the 6-th sentence also gets attraction by
all the others (brown frame), which may play a special role in the inspected document.

Discussion Document-level NMT has mostly concentrated on high-resource language pairs,
partly due to the need for large Transformer-based architectures. To address this limitation we
envision combining the model presented here with ideas from latent variable models of translation
(Zhang et al., 2016; Eikema and Aziz, 2019). This takes the form

p(C|θ) =

∫
p(z|x(1), . . . , x(|C|))

|C|∏
s=1

p(y(s)|x(s), z, θ)︸           ︷︷           ︸
simplified doc-level NMT

dz (24)
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Figure 9: Visualization of sentence-to-sentence attention based on segment-level relative attention.
Each row represents a sentence while each column represents another sentence to be
attended. The weights of each row sum to 1.

where marginalisation of a document-level latent representation breaks the independence assump-
tions of the conditional model without necessarily introducing direct conditioning on rich context.
Moreover, this can exploit pre-trained architectures for conditioning on entire documents, since
now there is no need for a decoder that is document aware, but only an encoder.

3.3.2 Comparison of document-level NMT approaches

This work, published at EAMT (Lopes et al., 2020) and in collaboration with Unbabel, provides a
systematic comparison of a representative set of document-level NMT approaches for English-to-
French, English-to-German and English-to-Brazilian Portuguese, tested in realistic high-resource
settings for two different scenarios: standard document-level translation and chat translation. We
evaluate the methods using (i) the standard automatic metric BLEU (Papineni et al., 2002), (ii) con-
trastive test sets, designed to test the ability of the approaches to use sentence-external context, and
(iii) manual annotations using proprietary chat data. Two additional contributions are:

• a new document-level approach, called the Doc-Star-Transformer (inspired by the star trans-
former’s (Guo et al., 2019) efficient method of computing pairwise comparisons), which is
capable of incorporating arbitrary long sequences from a document;

• a new large-scale contrastive pronoun test set for English-to-French,17 similar to the large-
scale test set for German pronouns (Müller et al., 2018).

The use of linguistic context (from the surrounding sentences or entire document) in NMT has
become a popular area of interest, guided by the development of full-scale neural architectures,
which facilitate the inclusion of additional representations such as those based on context. Many
different solutions to include additional context (from both the source and target language) have
been proposed, for example concatenating multiple sentences together and translating them simul-
taneously (Tiedemann and Scherrer, 2017), using multiple encoders to encode additional context
separately (Zhang et al., 2018) and using a cache mechanism to remember previously decoded
target words (Tu et al., 2018).

However, the various approaches have often been evaluated in different settings (evaluated on
different language pairs or datasets and sometimes only in artificially low resource settings, where
17Freely available at https://github.com/rbawden/Large-contrastive-pronoun-testset-EN-FR under an MIT licence.
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performance gains are easier to achieve when adding additional model parameters). Our systematic
comparison therefore aims to evaluate the real potential of these approaches and ascertain which
strategies work best for exploiting linguistic context.

Full details of the methods, experiments and results can be found in the published article (Lopes
et al., 2020), and we report only the more interesting results and conclusions below.

The BLEU score results show that once a strong baseline is used and the methods trained in high-
resource settings, few of them score significantly higher than the baseline. However, BLEU scores
are a poor indicator of how well the models are actually exploiting context and do not correlate to
the performance on the targeted contextual evaluation (Hardmeier, 2012; Bawden, 2018).

The targeted contextual evaluation using contrastive test sets looks at how well each model handles
linguistic phenomena that typically require extra-sentential context for the translation to be correct.
We test two phenomena:

• Anaphoric pronoun translation, whereby the French/German translations of the neutral Eng-
lish pronuns it and they are gender-marked, depending on which noun they refer to (which
can appear outside of the current sentence). For German, we have Es (masc.), Sie (fem.) and
Es (neuter) as translations of English it. For French we have il (masc.) and elle (fem.) for it
and ils (masc.) and elles (fem.) for they.

• Lexical choice (regrouping lexical coherence lexical cohesion), whereby a source term may
be ambiguous in it translation without disambiguating context, such as that provided by a
previous sentence.

The idea of these test sets is to evaluate each model on its ability to rank correct translations higher
than incorrect contrastive variants in which only the elements being evaluated are modified. An
example is shown in Figure 10, where the correct pronoun elles, corefering with the feminine noun
roses is modified with the masculine variant ils in the incorrect contrastive example.

Context sentence
SomeredrosesforYourLadyship.
Desrosesfem. pourmadame.

Current sentence
Whocouldtheybefrom?

� Dequipeuvent-ellesfem. bienêtre?
× Dequipeuvent-ilsmasc. bienêtre?

Figure 10: An example from the large-scale EN→FR contrastive test set.

We evaluate on large-scale anaphoric pronoun test sets for both English-to-German and English-
to-French using the test set from (Müller et al., 2018) and our large-scale test for French. In
addition, we evaluate on two smaller manually crafted test sets form (Bawden et al., 2018), which
are designed such that all sentence are ambiguous without preceding context and explicitly testing
the models’ ability to use preceding context.

The results of the contrastive evaluation is shown in Table 6. The scores are decomposed into target
pronouns for each of the large-scale test sets and total scores are given for the two smaller French
test sets (Anaphora and Coherence/cohesion). Interestingly, we see that the best scoring model
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overall is the simple approach of concatenating the current sentence to the previous sentence on
both the source and target side of the data (Concat2to2) and involves no modification to the baseline
model architecture. It generally performs better than those that include specific mechanisms for
integrating context (cache, multi-source encoder and the proposed Star approach). Notably, the
Concat2to2 approach is the only one to achieve scores that are clearly higher than the baseline
on the two smaller contrastive sets, showing that it is the only one that can reliably integrate the
preceding context. This supports a conclusion made in (Bawden et al., 2018) that this type of
model in which the previous translations are channelled through the decoder is more effective than
representing the context using a different mechanism.

EN→DE EN→FR

Total Es Sie Er Total
it they Anaphora

Coherence/

cohesion(%)
elle il elles ils All All

Baseline 45.0 91.9 22.9 20.2 79.7 88.1 82.7 76.1 72.2 50.0 50.0
Concat2to1 48.0 91.6 27.1 25.3 80.9 88.4 83.3 77.2 73.9 50.0 52.5
Concat2to2 70.8 91.8 61.9 58.7 83.2 89.2 86.2 80.4 77.6 82.5 55.0
Cache 45.2 92.1 23.5 19.9 79.7 88.0 82.7 76.0 72.0 50.0 50.0
Multi-srcEnc 42.6 62.3 33.9 31.5 59.0 62.0 61.3 57.2 57.3 47.0 46.5
Star,8heads 45.9 91.3 27.0 19.5 79.6 88.0 82.6 76.1 72.0 50.0 50.0

Table 6: Accuracies (in %) for the contrastive sets. Methods outperforming the baseline are in bold.

The general conclusions of this work are therefore (i) the importance of evaluating document-level
models in high-resource scenarios with a strong baseline trained on large quantities of data (as
performance gains can disappear in this setting) and (ii) the importance of evaluating these models
using targeted contextual evaluation, as BLEU scores do not reveal whether the models’ handling
of context is being improved. We find that despite many of the models having previously shown
improved performance when compared to a baseline, this does not always hold in more realistic
scenarios such as the ones we test. Moreover, the simplest approach we test has the best results,
suggesting that context is best exploited when integrated into the existing functionalities of the
NMT architecture.

3.3.3 Exploiting document sub-structure in NMT

In a work published at LREC 2020 (Dobreva et al., 2020), we investigate the usefulness of doc-
ument sub-structure as a source of information for NMT. Some documents, such as biographies
and encyclopedia entries, have a regular structure, with different articles containing sections which
can have similar vocabulary. These similarities can be exploited in MT as has been shown in
(Louis and Webber, 2014) in the framework of SMT. We adapt this idea to NMT, exploring two
different methods of integrating document structure information into NMT models: one using
side constraints (Sennrich et al., 2016a) and the other using a cache-based neural model (Kuang
et al., 2018). To this end we develop monolingual and parallel corpora for three language pairs
(French-English, Bulgarian-English and Chinese-English) consisting of Wikipedia biographies.18

The corpora preserve the section headings associated with each sentence.

18Freely available at https://github.com/radidd/Doc-substructure-NMT.
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To create the corpora, we use Wikimedia dumps to extract Wikipedia articles marked in the page
metadata as biographies or as describing certain categories of people, such as “writer” or “politi-
cian”. Wikipedia metadata also contains information about whether a page is a translation from
a corresponding page in another language. For the creation of the parallel corpora we use this
information to gather biographies that are translated from the relevant language for each of the lan-
guage pairs. Document alignment is therefore trivial, as the source page for every translated article
is identified via the metadata. Sentence alignment is done using Hunalign (Varga et al., 2005) and
Bleualign (Sennrich and Volk, 2011). We preserve information about the structure of documents
by preserving the name of the sections with which each sentence in the corpus is associated. We
also create monolingual corpora of Wikipedia biographies for each of the four languages, as well
as validation and test sets for each of the language pairs. The test sets are separated based on the
original language of the text.

We experiment with two methods for integrating document sub-structure information with NMT:
side constraints (Sennrich et al., 2016a) and a cache-based neural model (Kuang et al., 2018). Both
methods are implemented using the Transformer architecture (Vaswani et al., 2017) and both rely
on topic models trained on sections in the articles. The topic models are used to to infer the topic of
each section and provide topic representations. This is done since the section titles themselves are
not informative enough for the purpose of NMT. We train LDA models (Blei et al., 2003) separately
for each of the four languages and use a simple source to target topic projections based on which
target topic most commonly occurs with the given source topic. In the side constraints method the
topics are integrated in the form of tokens prepended to the source sentence. In the neural cache
model method, two caches are passed to the model: one containing the most pertinent vocabulary
to the current topic based on the learned topic models, and the other a set number of tokens from the
preceding sentences in the current section. The cache model calculates a probability distribution
over the vocabulary and is integrated in a shallow way with the NMT model.

We observe that using section level information, as opposed to document level information, does
not prove to be advantageous and in some cases appears to degrade model performance. Results
differ for the three language pairs, with the side constraints method showing better performance
for Bg-En and Zh-En, but not for Fr-En. For all language pairs results differ on the two test sets
(originally English text vs. originally {Bg/Fr/En} text), with BLEU scores on the originally English
text being consistently higher.
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4 Task 3.3 – Probabilistic Neural Machine Translation

NMT models are statistical models trained to output a probability distribution over a large dis-
crete combinatorial space, i.e, the space of all translations of a given input. More often than not,
the probabilistic view of NMT is overlooked. While it does motivate a criterion for parameter
estimation, namely, maximum likelihood, other implications are seldom exploited.

For example, NMT models are used as if they were discriminative margin-based classifiers, that
is, after training we form predictions by searching for a handful of highest-scoring translations.
Whereas in the unstructured case, that seems intuitive and works well in practice, in the structured
(combinatorial) case, the analogy quickly falls apart, especially in situations of high uncertainty,
such as in low-resource settings (Eikema and Aziz, 2020).

An alternative to mode-seeking algorithms that capitalises on the distribution as a whole is a form
of probabilistic voting known as minimum Bayes risk (MBR) decoding (Bickel and Doksum, 1977)
which was popular in days of statistical machine translation (Kumar and Byrne, 2004; Tromble
et al., 2008). MBR allows decisions to be guided by sentence-level (or even document-level)
statistics of samples from the model distribution. This is in contrast with decision rules based on
path-finding algorithms, like beam search (Sutskever et al., 2014), which are are constrained by
the incremental (left-to-right) view with which the model factorises the translation probability.

Another example, we always regularise maximum likelihood training, as otherwise high-capacity
neural networks would simply learn to memorise the training data and fail to translate unseen text.
Some regularisation techniques are better suited for unstructured classification, and though they
have been shown beneficial in high-resource settings, the situation is far less clear in the low-
resource case. One such a technique is label smoothing (Szegedy et al., 2016; Pereyra et al., 2017).
Understanding what aspects of label smoothing are beneficial in a low-resource setting and may
lead to better regularisation and thus better generalisation. One way of doing so is through the
language of Bayesian priors on parameter and/or function space. Other regularisation techniques,
emphasise a probabilistic account, for example Bayesian dropout (Gal and Ghahramani, 2016), but
they are typically not fully exploited after training.

The probabilistic point of view has a major advantage, namely, uncertainty management. Uncer-
tainty is sometimes seen as a problem, but we argue this is mostly so because of the ways in which
predictions are traditionally formed, namely, via mode-seeking search algorithms such as beam
search. Harnessed well, it can be used to make the most out of little data.

Objectives:

• Revise decision rules in NMT to exploit NMT models as probability distributions. Here we
seek to make predictions with a holistic view of the model’s beliefs.

• Introduce global statistics to decision rules. This may take the form of n-gram statistics, and
other edit operations sensitive to insertion, substitution, and word order differences. This can
also accommodate document-level statistics.

• Make use of Bayesian modelling techniques to improve the data efficiency of NMT models.
This may take the form of Bayesian priors in parameter and/or function space. Changes to
the way NMT factorises the probability of observations with the goal of better uncertainty
management and increased data efficiency are also relevant.
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Figure 11: Cumulative probability of 1,000 ancestral samples on the held-out in-domain (top) and
Flores (bottom) test sets. The dark blue line shows the average cumulative probability
over all test sentences, the shaded area represents 1 standard deviation away from the
average. The black dots to the right show the final cumulative probability for each individual
test sentence.

4.1 The Inadequacy of the Mode in NMT

NMT models are explored by deterministic mode-seeking algorithms such as beam search (Graves,
2012; Boulanger-Lewandowski et al., 2012; Sutskever et al., 2014), these algorithms neglect a lot
of information encoded in a distribution. In high-resource settings, models may be confident on
their predictions and it is plausible that disregarding the distribution as a whole still leads to good
results. In a low-resource setting we need to get all we can from the model, and that means we
need to use its uncertainty in our favour, rather than ignore it. One way to do so is to explore NMT
models as probability distributions, which they are as they are trained on maximum likelihood, and
design probabilistic criteria for predictions.

In Eikema and Aziz (2020) we do so by examining the probability distributions learned by NMT
systems on English-Nepali and English-Sinhala data. Both these language pairs have very few
high quality parallel resources. Moreover, there is little to no in-domain data available for these
language pairs. We mimic the training setup of Guzmán et al. (2019) and examine the distributions
obtained on the Flores (Guzmán et al., 2019) test set, as well as on a small held-out portion of the
training data.

First of all, we assess the fit of the model on the held-out portion of the training data. We use
hierarchical Bayesian models to model several aspects extracted from sampled translations, beam
search translations, and the gold-standard data. We look at length, lexical aspects of the data
(through unigrams and bigrams), and word order aspects of the data (through skip-bigrams). In all
cases we find that samples from the model are able to recover statistics of the data reasonably well,
but that beam search translations stray from the statistics of the data.

We also explore the set of translations that are likely under the model, both in the test domain
(Flores) and in the training domain (held-out data). We sample 1,000 translations on both test sets
and plot the cumulative probability of unique translations in Figure 11. What we find is that the
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Figure 12: METEOR and BLEU scores for oracle-selected samples as a function of sample size on
the held-out in domain (top) and Flores (bottom) test sets. For each sample size we repeat
the experiment 4 times and show a box plot per sample size. The blue lines show beam
search scores.

learned probability distributions are extremely flat in most cases, especially in the test domain. For
many cases (over half on the inputs in the test domain) we even sample 1,000 unique translations.
We also find that the beam search solution is very rarely sampled in the test domain (less than 10%
of the inputs). The mode of the distribution therefore seems rather arbitrary, as it represents only a
tiny amount of probability mass.

When we look at the average quality of the samples in terms of automatic evaluation metrics like
BLEU (Papineni et al., 2002) and METEOR (Denkowski and Lavie, 2011), we find that samples
perform between 0.4 and 8.2 BLEU and 0 and 4.7 METEOR worse than beam search, but that
overall the results are still decent. The variance in those results is very small, less than 0.2 BLEU
and less than 0.1 METEOR in all cases. Note that the comparison with beam search here is not
very fair, as random sampling is no decision rule. We experiment with selecting the best sample
out of a set of samples using an oracle decision rule (i.e. we have access to the reference for the
selection process). We select on sentence-level METEOR and report the results for varying sample
sizes in Figure 12. What we observe is that within a set as small as 10 samples we can already
outperform beam search if we knew how to select the best sample.

This motivates us looking into sampling-based decision rules, we experiment with minimum Bayes
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risk (MBR) decoding (Bickel and Doksum, 1977; Kumar and Byrne, 2004). Using a straight-
forward implementation of MBR where we obtain the hypothesis space using 30 samples from
the model and use sentence-level METEOR as the utility function. We find that in all comparis-
ons MBR beats or matches beam search performance, improving up to 4.5 METEOR. This is a
promising result for future research into practical sampling-based decision rules.

In Eikema and Aziz (2020) we also connect MAP decoding to many pathologies (Sountsov and
Sarawagi, 2016; Koehn and Knowles, 2017; Murray and Chiang, 2018; Ott et al., 2018; Kumar and
Sarawagi, 2019; Stahlberg and Byrne, 2019) and biases (Ranzato et al., 2016; Eikema and Aziz,
2020) observed in NMT. We show that criticising models in terms of statistics of the mode is a bias
in its own right, and argue that criticisms of probabilistically trained NMT models should be based
on the entire distribution rather than the mode. The results found in our experiments suggest that
the mode is arbitrary in many cases, as the set of likely translation is vast and no single translations
stands out over any other. Therefore, it seems that a more logical decision rule would be one that
takes into account more properties of the entire distribution rather than just the mode. This is
especially so in low-resource scenarios, where models are trained on little data and the test domain
often differs much more from the training domain.

4.2 On Probabilistic Alternatives to Label Smoothing

Label smoothing (LS; Szegedy et al., 2016; Pereyra et al., 2017) is a parameter estimation cri-
terion for Categorical-likelihood models which is inspired by, though not equivalent to, maximum
likelihood estimation (MLE). In LS, the likelihood of the observed class is weighted by 1 − ε and
the sum of likelihoods assigned to non-observed classes is weighted by 0 < ε < 1. In compar-
ison to a standard MLE procedure for a Categorical-likelihood model, label smoothing imposes
a stronger preference over hypotheses: for a given probability p of the observed class, standard
MLE is not sensitive to how the probability 1 − p spreads over the non-observed classes, that is,
MLE is not sensitive to the entropy assigned to non-observed classes, whereas LS prefers hypo-
theses that assign highest entropy over non-observations. While LS has been shown to improve
NMT for high-resourced languages (Ott et al., 2018), the situation is far less clear in low-resource
settings (Eikema and Aziz, 2020), as we uncovered in Section 4.1. Label smoothing boosts the
model’s confidence on the observed class at the expense of the ranking over non-observed classes.
Whereas this seems to have a positive effective on predictions formed by deterministic algorithms,
such as beam search, it has a very negative effect on the probabilistic interpretation of NMT mod-
els, leading to distributions that cannot be explored well generatively (that is, via sampling), some-
thing our community has already noticed in high-source settings (Graça et al., 2019).

We speculate that there is a relationship between LS, the amount of data, and predictions by local
search algorithms. If we have enough data to estimate model parameters, greedy predictions are
likely good and there’s little risk in outputting distributions that are close to deterministic. Where
we have less data, perhaps there is worth in the uncertainty maintained by MLE, though that
cannot be exploited by deterministic mode-seeking decision rules such as MAP decoding. In fact,
we demonstrate that, see Eikema and Aziz (2020, Appendix B), where a probabilistic decision rule
for an MLE-trained model outperforms beam-search for a LS-trained model.

Here, we investigate alternative formulations of label smoothing emphasising MLE-training with
the goal of bringing some of the improvements that LS has shown in high-resource settings to
the low-resource scenario. Another goal of this research is to tap onto such potential while still
exploring the model with probabilistic devices (i.e., ancestral sampling) that enable probabilistic
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decision rules. Our general strategy is to let non-observed classes be scored by our objective, as
they are in LS, not by flattening the distribution over non-observations, as LS does, but rather by
constraining output distributions to on average follow a Dirichlet posterior that reflects expected
word frequencies conditioned on the available training data.

Formulation Preferences over hypotheses are naturally expressed in the language of priors. For
a Categorical likelihood model, a Dirichlet prior can express the kinds of preferences we have
discussed so far, namely, a particular ranking (flat or otherwise) over non-observed classes. We are
going to use a simple conjugate Bayesian model to operationalise such preferences.

We observe y a data vector of counts which we model under a Dirichlet-Multinomial model

φ|α ∼ Dir(α1) (25a)
Y|φ ∼ Multinomial(N, φ) (25b)

where N =
∑v

i=1 yi is the total number of observations and α specifies a sparse symmetric Dirichlet
prior. The posterior is

φ|y, α ∼ Dir(α1 + y) , (25c)

which follows from the conjugacy between Dirichlet prior and Multinomial likelihood.

We want to train a neural network f (x; θ) to parameterise a Categorical distribution over observa-
tions Y |θ, x ∼ Cat( f (x; θ)), from which the observed class y is sampled. NMT is much like that,
where x corresponds to a source sentence and a target prefix, both observed, and y corresponds to
the next word in the observed target sentence. The NN f (x; θ) is the entire encoder-decoder with at-
tention architecture including a softmax output layer that parameterises the Categorical likelihood.
In NMT this NN is used repeatedly, with varying inputs, to generate (rather assess the probability
of) every token in the observed target sentence. We train this NN by estimating parameters θ that
maximise the likelihood of sampling the observed classes in context.

To impose a preference on f (·; θ) we will think of it as defining an approximation q(φ|θ) to the
posterior Dir(α1 + y) distribution over our Bayesian model, where we define q(φ|θ) implicitly as
the following stochastic procedure

X ∼ D φ = f (x; θ) , (26)

whereD is a dataset of observations.

We can satisfy both requirements, that is, assigning high likelihood to observations (MLE-training)
and following a specific posterior distribution (preference over hypotheses), by framing this as a
constrained optimisation problem:

max
θ
E(x,y)∼D[log Cat(y| f (x; θ))] (27)

s.t. Ex∼D[ f (x; θ)] ∼ Dir(α + y) , (28)

which we can approach via Lagrangian relaxation (Boyd et al., 2004). This constraint in distribu-
tion can be expressed in different ways. For example, if q(θ) were prescribed we could approach
MLE subject to

KL(q(φ))||Dir(φ|α1 + y)) = ε , (29)
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where ε is a small positive slack (close to zero). Unfortunately, q(φ) is implicit, thus we cannot
assess its value for a sample, we can only obtain samples from it. We can then attempt to satisfy the
constraint by matching statistics under the two processes. That is, for some statistic t we constraint
the classifier optimisation to satisfy

Eq(θ)[t(φ)] = EDir(α+y)[t(φ)] , (30)

where the left-hand side can be estimated via MC. For example, where t(φ) := log φi, we have

Eq(φ)[t(φ)]
MC
≈

1
S

S∑
s=1

t(φ(s)) (31)

EDir(α+y)[log φi] = Ψ(α + yi) − Ψ(vα + N) (32)

where Ψ is the digamma function and N =
∑v

i=1 yi. In NMT, this boils down to collecting statistics
from the softmax outputs of all steps in a batch, average them, and compare those to the same
statistics collected from a sample from the Dirichlet posterior. There are many methods to match
moments, this is only one of them and it’s an almost naively simple one. Better methods can be
found in the literature of two-sample tests. One of the best known tests, which is also very popular
in machine learning, is the kernel-based minimum mean discrepancy (MMD; Gretton et al., 2012).

Experiment We use the GoURMET English-Amharic data for this investigation and concentrate
on translation into English.19 Our systems are trained on parallel data only (for this investigation
we do not use synthetic data) using fairseq (Ott et al., 2019). We compare our formulation in
terms of constrained optimisation formulation to LS using the simple mean/variance matching
under the Dirichlet distribution sketched above as well as MMD. In particular, we are interested
in obtaining improved performance under a probabilistic (sampling-based) decision rule in low-
resource settings, we use minimum Bayes risk (Bickel and Doksum, 1977; Kumar and Byrne,
2004) with the estimator we propose in Section 4.1 (Eikema and Aziz, 2020, see section 7.6) and
using sentence-level METEOR as utility function. We experiment with the following posterior
constraints:

MS aims at EDir(α+y)[log φi] with count vector y derived from training data. This constraint aims at
matching the logarithm of the softmax probabilities with the logarithm of the corresponding
Dirichlet posterior on average.

MS-B is the same as MS but with count vector y derived from batch. Because the counts aggregate
fewer observations this is more prone to overfitting. Intuititvely this should behave more like
LS.

MM aims at matching EDir(α+y)[φi], compared to MS this omits the logarithm, which should make
the constraint smaller in magnitude and likely less influential.

MMD Compares softmax outputs in a batch to samples from EDir(α+y)[log φi] with y derived from
training data in terms of MMD and aims at keeping the difference below an epsilon. This
aims at matching all moments of the distribution and thus expresses the stronger preference.

19Similar, though yet preliminary, findings hold in the opposite direction, as well as on a different dataset of Nepali-
English translations (Guzmán et al., 2019).
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Figure 13: Distribution of softmax outputs in the validation set. Integers along the x-axis stand for
entries in the vocabulary ordered by observed frequency in the training set. The y-axis
corresponds to output probability on average. Note how LS (top-right) is flat outside the
most frequent tokens. Posterior constraints based on EDir(α+y)[log φi] (middle row) are
harsh, perhaps even harsher than LS. Targeting posterior moments (mean in bottom-left,
MMD in bottom-right) leads to something close to MLE, but without surprising bumps for
infrequent words.
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METEOR ↑

Task Criterion Beam Sampling MBR

Amharic-English MLE 11.6 11.0 12.4
s.t. posterior MS 12.4 3.8 6.2
s.t. posterior MS-B 12.8 5.1 7.2
s.t. posterior MM 11.6 10.9 12.3
s.t. posterior MMD 13.9 11.4 14.28

LS (ε = 0.2) 12.5 7.1 10.4

Table 7: Translation quality measured in METEOR ↑: we use METEOR because MBR needs a metric
defined at the sentence level. Beam search uses beam of size 5; sampling is the performance
measured on a single ancestral sample; MBR is estimated on 30 ancestral samples. Note
that increasing beam size degrades performance.

Findings Table 7 summarises results. First of all, note that MLE with MBR already catches up
with LS. This is a strong finding, which we have been observing for different language pairs and
with varying amounts of resources. It is in fact part of the motivation for Task 4 altogether, for
it shows that the model distribution contains valuable information, which in low-resource settings
we very much need to explore. Second, note that is rather difficult to maintain sampling perform-
ance, measured on a single sample or via MBR, while constraining MLE. Some of our posterior
constraints are too aggressive, like LS. Matching moments via MMD seems the most effective. We
are in the process of analysing the translation outputs to determine whether they differ from MLE-
training in a meaningful way. See Figure 13 for a visualisation of the effects of these different
criteria in the distribution of probabilities assigned by the model to observations in the validation
set. This is still ongoing work, but it already illustrates the potential for better regularisation via
Bayesian priors.

Related Work Müller et al. (2019) put forward an explanation of the effects of label smoothing
in terms of a preference in parameter space. Very recently, Meister et al. (2020) investigated label
smoothing under the light of entropy regularisation. They too found that LS and variants seem to
favour deterministic exploration of the model distribution. This line of work seems promising and
we aim to continue developing it.
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5 Conclusion

This section outlines what we have achieved in the first half of the project and how that contributes
to achieving the goals we set ourselves in the proposal. A summary of our research output, in the
form of conference publications, MSc theses, pre-prints under review, and open-source software
and data can be found in Figure 14. Finally, this section also outlines our priorities for the second
and final half of the project: Table 8 summarises how we plan to allocate resources per task and
lists directions that will most likely be explored.

Task Task Leader Resources Potential Directions

T3.1 UVA 20% Tighter integration with NMT, repurposing
models for sentence-alignment (WP1) and dis-
covery of sub-word units (WP2).

T3.2 UVA 40% Complex structure in NMT via sparse marginal-
isation, inform variants of latent feature models
with linguistic annotation available for English,
latent structure in document-level NMT to over-
come the need for large architecture blocks.

T3.3 UVA 40% MBR decoding, utility metrics for MBR decod-
ing, reducing support of distributions, Bayesian
regularisation.

Table 8: Allocation of resources per task in the second half of the project.

T3.1 We proposed to induce alignments without explicit supervision and to investigate the viab-
ility of continuous relaxations to discrete alignments. Our ultimate goal was to investigate whether
low-resource NMT could benefit from these word alignments. We have proposed a model that
relaxes strong assumptions made by classical models, and showed that we can train this model
reliably with little data. Though continuous relaxations are possible, and they have been show su-
perior for certain problems, for the alignment problem we noticed that discrete variables perform
better despite requiring a bit more careful gradient estimation. At this point we have not managed
to claim improved translation performance out of an integration between NMT and our unsuper-
vised alignments, but this is not yet a final word on the matter. A tighter integration, the kind
pursued in task T3.2, might still reveal opportunities for improvements. Task T3.1 will therefore
receive less of our time in the second half of the project, though we will pursue a collaboration
with WP1 and WP2 to repurpose the model develop here to meet some of their interests (i.e., data
collection and structure at sub-word level).

T3.2 We proposed to develop models that induce structured representations of sentences, ex-
amples of which are latent attributes, alignments, graphs, and trees. Our ultimate goal is to improve
data efficiency and claim improved translation quality by endowing NMT models with stronger in-
ductive biases. This task relies heavily on machine learning technology that is not readily in place,
and because of that, a fair amount of resources went to developing effective machine learning tools
for working with unobserved latent variables, especially of discrete nature. We have developed
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technology to more reliably induce latent clusters, collection of attributes, and trees (and have left
graphs aside for now) within neural models for text classification and language modelling. We
have also integrated some of these techniques into NMT showing progress in terms of translation

Conference Papers Main Task

PelsmaekerandAziz(2020) 3.2
Bastingsetal.(2019) 3.2
EikemaandAziz(2019) 3.2
Zhengetal.(2020) 3.2
Lopesetal.(2020) 3.2
Dobrevaetal.(2020) 3.2

Pre-prints Main Task

Correiaetal.(2020) [under review] 3.2
EikemaandAziz(2020) [under review] 3.3

Theses Main Task

vanStigt(2019) 3.2
Murady(2020) 3.2

Software and Data Main Task

Alignmentmodels 3.1
https://github.com/Roxot/m-to-n-alignments
Deeplatentlanguagemodels 3.2
https://github.com/tom-pelsmaeker/deep-generative-lm
Sparseapproximationstobinaryvariables 3.2
https://github.com/bastings/interpretable predictions
Languagemodelswithlatentsyntax 3.2
https://github.com/daandouwe/thesis
Deeplatenttranslationmodels 3.2
https://github.com/Roxot/AEVNMT.pt
Contrastivetestsetsfordocument-levelmachinetranslation 3.2
https://github.com/rbawden/Large-contrastive-pronoun-testset-EN-FR
Trainingdatafordocument-levelmachinetranslation 3.2
https://github.com/radidd/Doc-substructure-NMT
BayesiandataanalysisofNMTmodels 3.3
https://github.com/probabll/bda-nmt
Constrainedoptimisationfortorch 3.*
https://github.com/EelcovdW/pytorch-constrained-opt.git
Probabilisticmodulesfortorch 3.*
https://github.com/probabll/dgm.pt
Probabilitydistributionsfortorch 3.*
https://github.com/probabll/dists.pt

Figure 14: Summary of research output.
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quality. The second half of the project will see more of these techniques be deeply integrated with
NMT, in particular, those based on sparsification. Finally, we have identified an aspect of struc-
tured sentence models that holds great potential, and that was not sufficiently represented in the
original proposal, namely, how a sentence relates to its external context in a document. We have
embraced these document-level considerations contributing new models, datasets, as well as eval-
uation methodology, at this point we have emphasised challenges of document-level NMT more
broadly and not necessarily concerning low-resource languages. We expect this to remain an im-
portant aspect of task T3.2, and for the next half of the project we will steer its focus towards the
low-resource setting. To reduce the size of architectures, enabling these models in low-resource
settings, we envision using AEVNMT to introduce weaker forms of independence assumptions.

T3.3 We had originally proposed multilingual extensions to the approaches developed in task
T3.2, however, we revisited that decision. The original formulation creates an undesirable bottle-
neck, namely, the models of T3.2 and the developments of WP4 with regards to transfer learning
are crucial dependencies. Moreover, and perhaps more crucially, this hinders the potential for novel
contributions from T3.3. While studying discrete variants of AEVNMT in task T3.2, we realised
that a lot of valuable information coded in the probability distributions that NMT outputs goes to
waste at test time, when predictions are formed as if NMT models were margin-based classifiers,
rather than probabilistic models, and that a lot of this potential is hindered by certain regularisation
strategies originally developed for unstructured classifiers. We propose to exploit the implications
of probabilistic training of NMT models, which we argue have been under-explored. Moreover,
we aim to advance NTM’s data efficiency by improved probabilistic regularisation. With resources
dedicated in the last quarter, we have already shown a great deal of evidence, in particular, in low-
resource settings, for improvements due to a better probabilistic account to NMT. In the second
half, we expect to continue investing a reasonable amount of resources in this task. Directions of
particular interest are: efficient approximations to minimum Bayes risk (MBR) decoding, effective
utility metrics for MBR decoding, including those based on statistics gathered from the translation
as a whole (rather than incrementally), reducing the amount of probability mass that goes to waste
on clearly inadequate translations (such as overly short or overly long sentences), and investigation
of Bayesian priors for better regularisation.
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Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations using RNN En-
coder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar,
October 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL
https://www.aclweb.org/anthology/D14-1179.

Noam Chomsky. Syntactic structures. Mouton, 1964.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. Publisher: Ieee.

Mina Lee, Tatsunori B. Hashimoto, and Percy Liang. Learning Autocomplete Systems as a Com-
munication Game. In Proceedings of the 3rd NeurIPS Workshop on Emergent Communication,
2019.
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Gábor Melis, Chris Dyer, and Phil Blunsom. On the State of the Art of Evaluation in Neural
Language Models. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=ByJHuTgA-.

page51of58

https://www.aclweb.org/anthology/D16-1011
https://www.aclweb.org/anthology/D09-1005
https://www.aclweb.org/anthology/C16-1291
https://www.aclweb.org/anthology/C16-1291
https://www.aclweb.org/anthology/E14-1017
https://www.aclweb.org/anthology/E14-1017
https://openreview.net/forum?id=H1Y8hhg0b
http://proceedings.mlr.press/v48/martins16.html
http://arxiv.org/abs/2005.00820
https://openreview.net/forum?id=ByJHuTgA-
https://openreview.net/forum?id=ByJHuTgA-


GoURMET H2020–825299 D3.1 Initial Progress Report on Learning Structural Models

Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas, and James Henderson. Document-Level
Neural Machine Translation with Hierarchical Attention Networks. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 2947–2954, Brussels,
Belgium, October 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-
1325. URL https://www.aclweb.org/anthology/D18-1325.

Rada Mihalcea and Ted Pedersen. An Evaluation Exercise for Word Alignment. In Proceedings of
the HLT-NAACL 2003 Workshop on Building and Using Parallel Texts: Data Driven Machine
Translation and Beyond, pages 1–10, 2003. URL https://www.aclweb.org/anthology/W03-
0301.

Andriy Mnih and Karol Gregor. Neural Variational Inference and Learning in Belief Networks.
In Proceedings of the 31st International Conference on International Conference on Machine
Learning - Volume 32, ICML’14, pages II–1791–II–1799. JMLR.org, 2014. event-place:
Beijing, China.

Lina Murady. Probabilistic Models for Joint Classification and Rationale Extraction. Master’s
thesis, University of Amsterdam, 2020.

Kenton Murray and David Chiang. Correcting Length Bias in Neural Machine Translation. In
Proceedings of the Third Conference on Machine Translation: Research Papers, pages 212–
223, Brussels, Belgium, October 2018. Association for Computational Linguistics. doi: 10.
18653/v1/W18-6322. URL https://www.aclweb.org/anthology/W18-6322.

Mathias Müller, Annette Rios, Elena Voita, and Rico Sennrich. A Large-Scale Test Set for the Eval-
uation of Context-Aware Pronoun Translation in Neural Machine Translation. In Proceedings
of the Third Conference on Machine Translation: Research Papers, pages 61–72, Brussels, Bel-
gium, October 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-6307.
URL https://www.aclweb.org/anthology/W18-6307.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, and R. Gar-
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