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Abstract

This deliverable reports the work carried out in the first half of the GoURMET project under Work
Package 3: Modelling morphological structure. The work package is divided into three main tasks,
looking at different aspects of morphology or different techniques that can be used to exploit mor-
phological structure to improve the quality of machine translation (MT) systems, particularly for
low resource and morphologically rich languages. Task 1 is dedicated to linguistically-informed
NMT models using morphological information and intuitions. Task 2 is dedicated to future work
on jointly learning alignments between parallel sentences and morphology, as a way of inducing
subword segmentation. Finally, Task 3 comprises work on encoding features of morphology as
latent features within the model as a way of discovering and exploiting such information.
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1 Introduction

In low resource translation settings, learning to better exploit available data is crucial to improving
the performance of machine translation (MT) systems. Two major consequences of limited training
data are (i) a lack of vocabulary coverage (i.e. many words may not have previously been seen
during training) and (ii) limited learning for vocabulary items that have been seen few times during
training. This situation is exacerbated when dealing with languages that are highly inflectional
(i.e. they have rich morphology with many inflected forms for a single lemma); they have a higher
type-token ratio, meaning that there are more distinct vocabulary items to cover and therefore
generally more training data is required than for languages that are morphologically poor.

A way of reducing this problem is to work with the compositionality and patterns of the inflected
forms of a language to provide a better capacity to generalise across wordforms and ultimately
provide a better coverage of the languages’ vocabulary and of the role of words within a sentence.
There are two main ways in which morphology can be used to improve the generalisation capacity
of MT models: (i) through linguistically informed segmentation of words into their component
parts (e.g. corresponding to linguistic morphs) such that subwords are efficiently shared amongst
inflected versions of the same lemma,1 and (ii) using or inducing representations of morphological
information associated with words as a way of abstracting away from the wordforms and learning
patterns. Within the GoURMET project, we look at how both types of strategy can be used to
enhance the translation of low resource language pairs when applied to neural MT (NMT).

The work completed so far can be structured into the following three tasks (corresponding to the
tasks drawn up in the project proposal):

Task 1 Developing linguistically informed NMT models using morphology
This task is dedicated to the development of strategies to induce linguistically plausible
strategies of segmentation and to the integration of morphological information or morpho-
logically guided intuitions in either the source or target language. The scope of this task
has expanded slightly since the initial proposal and has more emphasis on using external
morphological information and intuitions to improve NMT.

Task 2 Jointly learning alignments and morphology
The goal of this task is to approach the learning of morphological segmentation by exploit-
ing parallel data in multiple languages. By jointly learning to align words or subwords in
the sentence-aligned parallel data, morphological alignments can be induced to develop
patterns of usage across languages.

Task 3 Exploit factors encoding latent features of morphology
Within this task, we aim to induce morphological patterns from the training data during the
training of the MT models by encoding morphological features as latent factors. Instead
of being provided as additional features as in Task 1, here, the features are induced during
the learning of the NMT model.

There has been progress particularly in Tasks 1 and 3, for which there are three pieces of work each,
some of which have led to peer-reviewed publications (See Section 5 for publications associated

1 This is in opposition to current statistically motivated subword segmentation strategies such as byte pair encoding
(BPE; Sennrich et al. 2016), which are not morphologically grounded.
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with this work package). Research related to Task 2 has started recently and will therefore be
expanded on in the final review of this work package. Individual directions for future work are
presented in the individual sections where relevant.

2 Task 1: Linguistically informed NMT models using morphology

The research carried out in the context of this task looks at how to exploit linguistically motivated
information and structure in NMT models, through the use of external tools and in the design
of the model architecture. The first two pieces of research (Sections 2.1 and 2.2) are related to
segmentation strategies in NMT; the challenge of representing the theoretically infinite vocabulary
of a language using a finite NMT vocabulary. The third piece of research (Section 2.3) looks at
the injection of morphological information into NMT: which type of information is most useful
and how to best integrate it into the model to improve translation.

2.1 Morphological segmentation using Apertium (UA)

It is common practice in NMT to segment words into smaller units in order to represent any word
in a language using a fixed-size vocabulary. One of the most commonly used strategies is byte
pair encoding (BPE) (Sennrich et al., 2016), consisting in merging sequences of characters that
more commonly appear in succession. However, it is a statistically driven strategy rather than
a linguistically motivated one, potentially limiting its capacity to effectively create valid patterns
across subword units. Morphological segmentation on the other hand is a strategy for segmenting
words into subword units that consists in splitting them into a stem, which carries the meaning
of the word, and a suffix (or sequence of suffixes) containing morphological and syntactic inform-
ation. This strategy has been found to outperform the more commonly used BPE segmentation
strategy when used to train NMT models for highly inflected languages such as Finnish (Sánchez-
Cartagena and Toral, 2016), German (Huck et al., 2017) and Basque (Sánchez-Cartagena, 2018).
In these cases, morphological segmentation can allow the NMT system to better generalise the
observed evidence, since the core meaning of words and their grammatical properties are encoded
in different tokens.

Unfortunately, morphological segmenters may not be available for many under-resourced lan-
guages. Although morphological analysers, which are more generally available, could be mod-
ified to perform morphological segmentation, they may have poor coverage for under-resourced
languages, i.e. they may be able to provide an analysis/segmentation for only a small proportion
of words in a given text. We address these issues in the Universitat d’Alacant’s submission to the
WMT 2019 news translation shared task (Barrault et al., 2019) for the English–Kazakh language
pair (Sánchez-Cartagena et al., 2019), where we use morphological segmentation for Kazakh. We
follow a hybrid morphological segmentation algorithm that combines (i) an existing morpholo-
gical analyser with (ii) knowledge from a corpus. This hybrid strategy enables us to overcome
the coverage issues of the morphological analyser and provide morphological segmentation for all
words in the corpus.
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Hybrid morphological approach to word segmentation We use the Apertium Kazakh mor-
phological analyser2 to generate candidates for subword segmentation based on the morphological
analyses generated. These analyses are then disambiguated using a semi-supervised learning ap-
proach and the Morfessor toolkit (Virpioja et al., 2013).

For each word, the Apertium morphological analyser provides a set of candidate analyses, each
made up of a lemma and morphological information. Those analyses in which the lemma is a
prefix of the word are considered valid analyses for segmentation. When this is the case, it means
that the word can be morphologically segmented into two parts: the lemma and the remainder of
the word, a strategy that can safely be applied in Kazakh since the stem usually corresponds to the
lemma.3 For instance, in the first example in Table 1, the Kazakh word университетiнiң has a
single analysis whose lemma is университет ‘university’. As the lemma is a prefix of the word,
it is morphologically segmented as университет plus iнiң. When a word has no valid analysis
for segmentation, we generate as many segmentation candidates as there are known suffixes that
match the word (plus the empty suffix, since a possible option could be no segmentation at all).
Known suffixes are extracted in advance from the words for which a single valid analysis is found.

When there are multiple segmentation candidates (either because they come from multiple valid
analyses or from suffix matching), they need to be disambiguated. We decide on the best segment-
ation for these words by applying semi-supervised morphology learning methods to a monolingual
corpus. We choose to use Morfessor, a family of methods for automatically learning morpholo-
gical segmentation based on the principle of minimum description length (?); the words in a corpus
are split into morphs such that the size of the morph vocabulary and the length in tokens of the
corpus are minimised. We use a semi-supervised variant of Morfessor in which the segmentation
model can be estimated from a raw corpus and a set of already segmented words (Kohonen et al.,
2010). A similar approach was followed by Sánchez-Cartagena (2018) to exploit a spellchecker
for morphological segmentation. A Morfessor model was trained on all available Kazakh corpora
for the WMT shared task with the supervision of those words from the corpus with a single valid
analysis. Note that the words used as a supervised input to Morfessor do not need to be segmen-
ted by the model, since their segmentation obtained from the Apertium morphological analysis is
always preferred.

Finally, as suggested by Huck et al. (2017), BPE splitting is applied on top of morphological
segmentation with a model learned on the concatenation of all training corpora. Applying BPE
to further split the subword units obtained after morphological segmentation helps the system to
transliterate proper nouns, translate compounds and to control vocabulary size. As the suffixes
are rather regular and frequent, usually only the lemmas are affected by BPE splitting. As an
estimation of the amount of segmentation carried out in each step, we provide token counts for
the Kazakh corpus used to train the system submitted to the WMT shared task: it contained 219
million tokens before any segmentation, 298 million tokens after morphological segmentation, and
319 million tokens after the BPE splitting applied on top of morphological segmentation. The BPE
model was trained with 50,000 operations.

2 Available at https://wiki.apertium.org/wiki/Apertium-kaz. The size of the dictionary of this morphological analyser
is smaller than that of other languages available in the Apertium project: it contains around 35 000 entries, while the
English one contains 55 000.

3 This cannot be used in all languages, for example Romance languages. Consider, for instance, the verb cantar ‘sing’
in Spanish. The first person singular form of the present tense of cantar is canto, whose stem is cant- and not cantar.
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Results and analysis Preliminary experiments carried out using the English–Kazakh parallel
corpus made available for the shared task showed that the proposed morphological segmentation
strategy outperforms plain BPE segmentation by over 1 chrF++ point (Popović, 2017). These
results are supported by the fact that the final submitted system was ranked 1st according to the
shared task human evaluation.

Word Analyses Morph. seg. Plain BPE

университетiнiң университет-n.px3sp.gen университет@@ iнiң университетiнiң

жасалмайды
жаса-v.tp.n.p3

жасал@@ майды жас@@ алмайды
жасал-v.i.n.p3*

Table 1: Examples of Kazakh words, their morphological analyses according to Apertium and their
segmentation.

Some examples of Kazakh words with their morphological analysis according to Apertium and
morphological segmentation (prior to BPE splitting) are given in Table 1 (subword boundaries are
marked using @@).The first word is the genitive form of университет ‘university’. Morpholo-
gical segmentation allows the NMT system to generalise to other inflected forms of the same word
(with the same stem), whereas BPE does not split it because it is a frequent term in the corpus. The
second word is an inflected form of the verb жаса ‘to do’. It is also analysed as a inflected form of
жасал, a word that does not exist, due to an error in the Apertium analyser. The Morfessor model
preferred the wrong analysis. However the plain BPE segmentation makes translation even more
difficult for the MT system by choosing the prefix жас ‘young’, introducing more ambiguity, as
the token жас can encode both the verb to do and the adjective young.

2.2 Hierarchical modelling of word boundaries for NMT (UEDIN, UVA)

In neural machine translation it is standard practise to break words into sub-word units to avoid
problems with limits on vocabulary size. Recent studies have shown that the idea of segmenting
words into consistent components can be done directly at the character level (i.e. using a much
smaller vocabulary consisting of individual characters) (Cherry et al., 2018; Luong and Manning,
2016). It has been shown to deliver translation accuracy on par with subword-based segmentation,
with the caveat that it comes at a cost of having to use deeper networks and endure longer training
times. In order to provide a more computationally efficient solution, we investigate the importance
of maintaining word boundaries in character-level NMT by means of a hierarchical decoding ar-
chitecture, where translations are subsequently generated at the level of words and characters. We
evaluate our method against conventional open-vocabulary NMT methods from English into five
morphologically rich languages, and show that our model can reach higher translation accuracy
using significantly fewer parameters, while demonstrating a better capacity to learn to represent
longer distance context and grammatical dependencies. The full description of this work can be
found in the publication that we presented at the Workshop on Neural Generation and Translation
2019 (Ataman et al., 2019).

Hierarchical decoding We propose character-level decoding in NMT by modelling translation
through a hierarchical architecture (Luong and Manning, 2016). In this architecture, the input
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Figure 1: Hierarchical NMT decoder: input words are encoded as character sequences and the
translation is predicted at the level of words. The output words are generated as character
sequences. Character-level NMT decoder: the next token in the sentence is predicted by
computing the attention weights and the target context successively for each character in
the sentence.

embedding layer of the decoder is augmented with a character-level bi-RNN, which estimates a
composition function over the embeddings of the characters in each word to compute distributed
representations of target words in the sentence, as illustrated in Figure 1.

We test the architecture on the translation of English into five languages from different language
families and exhibiting distinct morphological typologies: Arabic (templatic), Czech (mostly fu-
sional, partially agglutinative), German (fusional), Italian (fusional) and Turkish (agglutinative).
We use the TED Talks corpora (Cettolo et al., 2012), which range from 110K to 240K sentences.
The low-resource setting for the training data allows us to examine the quality of the internal
representations learned by each decoder under high data sparseness.

Results and analysis The models are evaluated using the standard automatic evaluation metric
BLEU (Papineni et al., 2002). The results of the experiments given in Table 2 show that the
hierarchical decoder can reach a translation performance comparable to or better than the NMT
model based on subword units in all languages, while using almost three times fewer parameters.
The improvements are especially evident in Arabic (AR) and Turkish (TR), where the hierarchical
decoder improves by +0.82 and +0.89 BLEU respectively. In Czech (CS), Italian (IT) and German
(DE), which are fusional languages, the performance of the two decoders is generally comparable.
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Model Output Units BLEU Avg. Avg.
AR CS DE IT TR # Params Conv. Time

Linear Subwords 14.67 16.60 24.29 26.23 8.85 22M 10.63
Linear Characters 12.72 16.94 22.23 24.33 10.65 7.3M 23.40
Hierarchical Characters 15.55 16.79 23.91 26.64 9.74 7.3M 19.60

Table 2: Results of the experiment under low-resource settings The average convergence time is the
average number of epochs until convergence. The average numbers of parameters are cal-
culated only for the decoders of the NMT models (in millions). The best scores for each
translation direction are in bold font. All improvements over the baselines are statistically
significant (p-value < 0.01).

In Czech (CS), the hierarchical model outperforms the subword-based model by 0.19 BLEU and in
Italian by 0.41 BLEU. The subword-based NMT model achieves the best performance in German,
a language that is rich in compounding, where explicit word segmentation is likely to be be useful
in increasing the translation accuracy.

The fully character-level NMT model, on the other hand, outperforms the hierarchical model in
Turkish by 0.91 BLEU and in Czech by 0.15 BLEU. These two directions constitute the most
sparse settings. The improvements are proportional to the amount of sparsity in two languages, as
shown by the type-token ratios in the training corpora; Turkish has the highest amount of sparsity,
followed by Czech. In the case of high lexical sparsity, learning to translate based on character-
level representations might aid to reduce contextual sparsity, allowing to translate rare or unseen
words more accurately.

2.3 Integration of linguistic information into NMT (UA)

In under-resourced settings, additional sources of information in the form of relevant linguistic
factors (word-level annotations, such as part-of-speech (PoS), morphological or syntactic tags)
have proved their usefulness in boosting translation performance. These factors may be integrated
in the source language (Sennrich and Haddow, 2016) or in the target language (García-Martínez
et al., 2016), the latter opening the door to the introduction of multi-task learning techniques (Mc-
Cann et al., 2018; Luong et al., 2016; Niehues and Cho, 2017).

Currently, when building an NMT system for a new language pair, it is difficult to know which
type of linguistic factor is the most appropriate and which mechanism is the most effective for
integrating it into the system. The literature only provides partial results and the conclusions are
often contradictory. For instance, while Nadejde et al. (2017) successfuly combine factors with
surface forms in the target language, Tamchyna et al. (2017) claim that the introduction of PoS
and morphological information in the target language is only useful when it is combined with lem-
matisation. Yang et al. (2019) concludes that target language PoS information boosts translation
quality with a carefully designed architecture, but (Wagner, 2019) find that target language PoS
and morphological information does not bring any advantage.

Systematic comparison of the use of morphological information With the aim of clari-
fying the role of the linguistic annotation of words in NMT, we carried out a systematic study
(Sánchez-Cartagena et al., 2020). The study covers the following dimensions: eight language
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pairs, three training corpus sizes, two NMT architectures: Transformer (Vaswani et al., 2017) and
recurrent (Bahdanau et al., 2015), three types of tag: dummy (with no linguistic information at all),
PoS tags and morphological tags. Moreover, the impact of each type of tag is studied when it is
integrated either in the source or in the target language. The linguistic tags are integrated by means
of the interleaving approach (Nadejde et al., 2017) (tags are treated as additional tokens following
the word they qualify), which provides a straightforward framework for comparing the different
types of linguistic information and NMT architectures.

Main results and conclusions We evaluate the resulting translations using automatic evalu-
ation metrics and analyse the translation performance with respect to sentence length and automatic
error classification. In line with existing results in the literature, the study shows that source lan-
guage tags, which help to obtain more accurate representations of the source language sentence,
are helpful regardless of training corpus size, language pair, and NMT architecture. Moreover,
no consistent differences were found between PoS and morphological information. On the con-
trary, results for target language tags were more meaningful: PoS tags systematically outperform
morphological tags in terms of automatic evaluation metrics, despite the fact that the addition of
morphology leads to a more grammatical output. Finally, the combination of tags in both the
source language and the target language further improves the results.

The cause of the performance degradation observed when introducing morphological information
in the target language seems to be related to data sparseness; additional experiments show that pre-
dicting target language PoS and target language morphological information together in a single tag
degrades the accuracy of the PoS tag prediction. This suggests that predicting the target language
PoS tag of each target language word should be a different task from predicting its morphological
information in order to optimise the use of target language morphological information in NMT.

Results also show that interleaved tags are not the optimal way of introducing target language
linguistic information into Transformer systems, as the introduction of tags without content (i.e. an
identical tag is introduced before every word) degrades translation quality. That degradation is not
observed for recurrent systems, which suggest that they are more tolerant to the introduction of
additional information in the target-language stream. This is compatible with the results of the
automatic error analyses, which show that transformer systems make consistently more reordering
errors. Another empirical observation that supports this hypothesis is the fact that the gain brought
by the added linguistic information only scales to large data scenarios (e.g. the English–German
pair of the WMT news translation shared task) when using the recurrent architecture.

Future work We are currently following a line of research aiming to extend these analyses. It
is based on the following problem formalisation: training an NMT system with interleaved target
language tags can be seen as a multi-task learning problem. The two tasks are: prediction of target
language surface forms and prediction of target language tags. The interleaving approach involves:
i) sharing all the parameters of the network between both tasks; and ii) giving exactly the same
weight to both tasks. It is worth studying whether there is an optimal separation between the tasks
by specialising some parts of the network on a specific task and dynamically adapting the weight
of the two subtasks (Chen et al., 2018; Jean et al., 2018).

page 12 of 32



GoURMET H2020–825299 D2.1 Initial progress report on modelling morphological structure

3 Task 2: Jointly learning alignments and morphology

The research directions proposed in this second task concern using information from alignments
between parallel sentences to guide morphological segmentation, by training a joint generative
model of segmentation and parallel data. This research has just been started and will therefore be
presented in the final report. However, we present a summary of the proposal in Section 3.1.

3.1 Segmentation models informed by alignment (UVA)

We aim to use translation data (i.e. sentence-aligned parallel corpora) to induce subword units
without direct supervision for segmentation. The idea is to combine models of unsupervised seg-
mentation, such as the model of Kawakami et al. (2019), and models of unsupervised alignment
(such as the model presented in D3.1, Task 2).

I will come tomorrow

yarın geleceğim

I will come tomorrow

yarın gel- -eceğ- -im

Figure 2: Two ways of generating a complex Turkish wordform from its English translation. Top: we
condition on the English tokens and generate the Turkish word geleceğim by transforming
the 3 English tokens it aligns to (suppose we are given alignment information). This gen-
eration can be realised, for example, with a character-based model. Alternatively (bottom),
we can generate the Turkish word one segment at a time, in which case, each segment is
independently supported by a smaller set of English token (one each, in this case). Clearly,
neither segmentation nor alignments are directly observable. The example is meant to illus-
trate that word segmentation and word alignment are unsupervised problems that interact
when modelling translation data.

Take the example of parallel data involving an agglutinative language, such as Turkish, and an
analytic language, such as English (see Figure 2 for an example). Due to differences in morpho-
logy, we expect a Turkish token to align to multiple English tokens: this fine-grained alignment
information is a valuable inductive bias for segmentation of Turkish words. Intuitively, the trans-
lation bias injected by the alignment component helps ground segmentation decisions leading to
subword units that are more likely to capture linguistic features. Using an alignment model rather
than a full MT system will allow us to explore richer inductive bias with smaller models.

4 Task 3: Factors encoding latent features of morphology

This final task is dedicated to models in which morphological attributes are induced as latent vari-
ables while training towards a downstream learning signal such as word generation or translation.
This lies in contrast to the models in Task 1, for which the morphological information was provided
more explicitly to the models.
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Three pieces of research correspond to this task, concerning the latent modelling of morphological
features. The first (Section 4.1) involves designing a generative model of inflected wordforms in
a semi-supervised way, applied to a single language. This work is then revisited and extended in
Section 4.2 to apply it to MT (rather than in a monolingual setting), where the decoder must inflect
every single word in the target sequence. In this second work, latent morphology is induced in
an entirely unsupervised way, rather than being partly supervised as in the first work. Finally, we
present a variational NMT model with morphological priors (Section 4.3), which introduces latent
modelling of morphology as in the second work, but is also designed to benefit from some degree
of supervision for the morphological features, rather than them being entirely unsupervised.

4.1 Generative models of inflected wordforms (UVA)

The goal of this research is to design models that can generated complex inflected wordforms. In
this section, we study models that generate words in isolation and in a monolingual setting, and
in Section 4.2 we extend this work to NMT, where words must be generated in context. To study
word generation in a monolingual setting, in this section, we approach the task of morphological
reinflection.

Morphological reinflection We use data from the morphological reinflection task organised by
SIGMORPHON 2016 (Cotterell et al., 2016). In this task, for a given language, we are given a
source word x(s) and target word x(t) (corresponding to two inflected forms of the same lemma),
and a collection of discrete features y that describe the morphological attributes of x(t). Two such
examples are shown in Table 3. The task corresponds to learning to map 〈x(s), y〉 to x(t), i.e. learning
to reinflect the source into x(t). Note that x(s) is a form of indirect supervision for lemmas, that is,
we can think of this problem as learning to represent the lemma these wordforms share, which
we can do from x(s) alone, and transform this lemma representation into x(t) by realisation of the
morphological features in y.

Lang Source form (x(s)) Features (y) Target form (x(t))

English ran PresPart running
Spanish digo Future2S dirás

Table 3: Two examples (one English and one Spanish) from the SIGMORPHON 2016 reinflection
task. x(s) corresponds to an inflected form of the same lemma as x(t) to be predicted and the
features y refer to the morphological attributes that define the inflected target word.

Motivation In NMT, which is the end goal of this work, target-language wordforms are gener-
ated one BPE subword at a time. Instead, we envision generating wordforms with a morphologic-
ally inspired model that infers a representation of a word’s lemma from the available information
(source-language sentence and target-language prefix) as well as the morphological attributes that
should govern the generation of the inflected wordform one character at a time. In NMT we will
not have a related wordform x(s), but rather the source-language sentence and the target prefix
which implicitly constrain the possible lemmas, similarly, we will not have a vector of observed
morphological attributes y, but rather we will have to infer them from the available (unlabelled)
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data. While we do not apply the morphological model to NMT in this section (See Section 4.2 for
its application to NMT), we approach the task with this final goal in mind, and therefore we adapt
an existing model (MSVED; Zhou and Neubig, 2017), making it more convenient for NMT.

MSVED Zhou and Neubig (2017) introduce the multi-space variational auto-encoder (MSVED),
a generative model of inflected wordforms with continuous latent variables to represent lemmas
(or the lexical semantics of a word) and (approximately) discrete variables to capture morpholo-
gical attributes. MSVED uses x(s) to predict a continuous representation z of the lemma of x(t),
and then uses the lemma along with morphological attributes y to generate x(t). Where y is not
available, for example because it is not annotated in the dataset, MSVED predicts it from x(t) using
a variational auto-encoder objective (VAE; Kingma and Welling, 2014). This combines supervised
and unsupervised learning into a semi-supervised VAE (Kingma et al., 2014). The model contains
a number of components, namely a generator of inflected wordforms p(x(t)|z, y, θ), where y corres-
pond to a vector of morphological attributes and z a continuous embedding of the lemma of x(t),
a classifier q(y|x(t), φ) that recognises morphological attributes y in the inflected form x(t), and a
mechanism q(z|x(s), φ) to infer representation of lemmas. Note that for the lemma, MSVED uses
the related wordform x(s) rather than x(t) directly, thus MSVED can also be seen as a combination of
an encoder-decoder and a variational auto-encoder. The model is trained via variational inference
(VI; Jordan et al., 1999) by maximising the evidence lowerbound (ELBO) given a datasetD of la-
belled observations, each of the form 〈x(s), x(t), y〉, and a datasetU of unlabelled observations, each
of the form 〈x(s), x(t)〉. In the supervised case, it uses the reparameterisation trick of Kingma and
Welling (2014) to backpropagate through lemma samples. In the unsupervised case, additionally,
we need to backpropagate through samples from a discrete distribution, namely, the distribution
over morphological attributes of x(t). As this is not generally possible, Zhou and Neubig (2017) use
a continuous relaxation known as Concrete distribution (Maddison et al., 2017; Jang et al., 2017),
or Gumbel-Softmax, together with a biased proxy gradient known as straigh-through estimator
(STE; Bengio et al., 2013). Figure 6 illustrates the architecture (though with some components
adapted as we discuss next).

Sparse relaxation to a latent factor model The design of MSVED is rather elegant, yet it
makes a few assumptions that we revisit. First, the classifier exploits knowledge about the mor-
phological attribute space that we wish to remove. That is because as we shall see, this knowledge
will not be available when we adapt this component to be an integral part of an NMT model. Es-
sentially, the classifier network in MSVED treats each type of morphological attribute separately
(e.g. verb features are separate from nominal features, etc.). Instead, we would like to model all fea-
tures together using a collection of binary attributes as in classic latent feature models (Ghahramani
and Griffiths, 2006). This sidesteps the need for careful specification of morphological attributes,
which is convenient when we have to discover them unsupervisedly from data.4 Secondly, the
inference model in MSVED is trained with a biased proxy gradient known as straight-through es-
timator (STE; Bengio et al., 2013). In order to make this component an integral part of a large
and complex NMT architecture, we prefer to work with unbiased gradient estimates, as biased
gradients violate a formal requirement of stochastic optimisation (Robbins and Monro, 1951; Bot-
tou and Cun, 2004). Here we use the sparse relaxation to binary variables developed in WP3 (see
D3.1, Task 2) and presented in (Bastings et al., 2019), which admits unbiased and differentiable

4 Of course, should enough information be available, we can split features into different collections as they do.
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sampling. Thirdly, we would also like to investigate how well we can do without the related source
form x(s), since this would be closer to the realistic scenario where we inflect target-language
wordforms in NMT.

Figure 3: Architecture of the classifier for morphological attributes: we encode the inflected word form
x using a BiLSTM and parameterise a distribution q(y|x, φ) over D morphological attributes.
Each q(yd = 1|x, φ) indicates the likelihood of recognising the dth morphological feature.

As there are many aspects to this model, here we report on a subset of the complete investigation.5

MSVED has several components: a model that infers a lemma representation, a model that predicts
morphological attributes and a model that generates inflected words one character at a time. We
therefore investigate the impact of our modifications on all of them. First, we concentrate on the
subtask of predicting morphological attributes from a given wordform. This is initially framed as a
fully supervised learning problem, i.e. learning to predict y from x(t). Next, we investigate whether
unlabelled data (x(t) missing y) can help improve classification performance via semi-supervised
learning. Finally, we evaluate our models in terms of the generation of inflected forms x(t) where we
are given x(s) and y. Here we compare our approach to a fully supervised baseline (i.e. an encoder-
decoder model that learns from labelled data only) and the original MSVED (which learns from
labelled and unlabelled data).

Learning to predict morphological attributes We start by assessing whether we can learn
to predict morphological attributes using a relaxation to binary variables developed in WP3. The
setup is as follows: we are given a datasetD of pairs 〈x, y〉 and learn to map x to a distribution over
its likely morphological features. In this case, we train a fully supervised model by maximising∑

〈x,y〉∈D

log q(y|x, φ) (1)

the likelihood of observations. Table 4 shows results for Turkish (SIGMORPHON Task 3) with
the model illustrated in Figure 3. In particular, we vary the choice of likelihood, namely Bernoulli
(properly discrete) versus HardKuma (approximately discrete).

Note that the relaxation does hurt classification performance and that predicting features independ-
ently is bad for precision. This makes sense: since we put all feature types together in one long
list of binary attributes, modelling correlations becomes essential. We model correlations by using
a MADE (Germain et al., 2015) in the output layer shown in Figure 3.6 See Figure 4 for some
5 This work appears in Gupta’s 2019 MSc thesis, which contains many more details, experiments, and analyses.
6 A MADE is a feed-forward neural network designed such that the dth output depends only on inputs k < d. MADEs

are very powerful and retain the scalability of feed-forward networks.
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Architecture Distribution Precision Recall F1

Independent Bernoulli 71.85 95.88 82.14
HardKuma 56.73 97.44 71.71

MADE Bernoulli 78.32 92.12 84.66
HardKuma 67.81 94.10 78.82

Table 4: Test classification performance for Turkish morphology (SIGMORPHON Task 3).

examples. The HardKuma seems to sacrifice precision for recall. This is not necessarily bad as
our goal is generation rather than classification. Having a good classifier is a plus because it helps
disentangle morphological inflections in the generator, but having low-variance gradients is also
important for maximisation of the ELBO. Plugging the truly binary (Bernoulli) model into the VAE
would lead to difficulties with regards to gradient estimation and the need for the rather noisy score
function estimator (SFE; Rubinstein, 1986; Williams, 1992). To avoid that kind of complication,
we decide continue with HardKuma in its stronger (MADE) parameterisation.

Figure 4: Two example words from the Turkish dataset showing the morphological feature: (top)
haritalarimizi and (bottom) lezzetlerini. The first row shows the target features.
The second row shows predictions with truly binary attributes. The third and fourth show
predictions with HardKuma attributes. In the last row we discretise HardKuma draws (not
for training, only for predictions) with threshold 0.5.

Semi-Supervised Learning Next we attempt to also learn from data that lacks supervision for
morphological attributes. To do so, we use a semi-supervised VAE objective, i.e. given a wordform
x, we predict a continuous representation z of its lemma and its morphological attributes y, for
which we use the model q(y|x, φ) just discussed. The setup is as follows: either we are given a
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labelled word 〈x, y〉 ∈ D or an unlabelled word x ∈ U. We therefore optimise the unsupervised
objective: ∑

x∈U

Eq(z|x,φ)q(y|x,φ)
[
log p(x|z, y, θ)

]
− KL(q(z|x, φ)||p(z)) − KL(q(y|x, φ)||p(y)) , (2)

along with the supervised objective∑
〈x,y〉∈D

Eq(z|x,φ)
[
log p(x|z, y, θ)

]
− KL(q(z|x, φ)||p(z)) + α log q(y|x, φ) . (3)

These objectives combine a standard sequence VAE (Bowman et al., 2016) (though using character-
level generation) with the classifier for morphological attributes that we previously discussed,
which plays the role of an inference model for missing y. First, we faced the problem of posterior
collapse (Bowman et al., 2016; Alemi et al., 2018), whereby the recurrent character-level decoder
p(x|z, y, θ) =

∏|x|
i=1 p(xi|z, y, x<i, θ) learns to model the data without conditioning on z. This makes

the latent space useless in the sense that neighbourhood in latent space does not correspond to any
aspect of structural similarity in data space (let alone morphological or lexical semantics similar-
ity). To counter that effect we employ the minimum desired rate constraint (MDR; Pelsmaeker and
Aziz, 2020) developed in WP3 (see D3.2, Task 2). Table 5 compares our model, which employs
HardKuma distributions and thus admits unbiased gradient estimates, to biased estimates from the
Concrete distribution (Maddison et al., 2017; Jang et al., 2017), which is used in MSVED. We can
see that dealing with the cases where we lack supervision via unbiased gradients leads to better
classification performance. Figure 5 shows that words with similar lemmas are roughly grouped
together, though pronounced clusters are not yet formed.

Distribution Precision Recall F1

Concrete 65.13 91.96 76.25
HardKuma 68.57 95.22 79.72

Table 5: Classification performance (Turkish) with a VAE that does not receive indirect supervision for
lemma.

Figure 5: tSNE plot of the latent space of an unsupervised model of Turkish wordforms: each point is
the Gaussian posterior mean for a given wordform. We show verb and noun forms: on the
left data points are coloured according to lemma, on the right according to POS.
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Figure 6: Architecture of the complete VAE used to generate inflected wordforms. We encode the
related source wordform x(s) using a BiLSTM, and parameterise a Gaussian distribution
over latent continuous representations z, and a collection of HardKuma distributions over
sparse attributes y, after sampling z adn y with differentiable reparameterisations, we use
them to initialise a recurrent decoder that generates the inflected form x(t) one character at
a time while attending to the attributes y.

Reinflection Finally, we put all components together into a VAE that learns from unlabelled
paired wordforms, i.e. 〈x(s), x(t)〉, as well as from paired wordforms where the target wordform is
annotated with morphological attributes, i.e. 〈x(s), x(t), y〉. Figure 6 illustrates the complete archi-
tecture. Again, posterior collapse was a problem and again we resorted to MDR. Figure 7 shows
how MDR leads to a latent space where neighbouring words share lemma. This time clusters are
very pronounced, showing the importance of the indirect supervision provided by x(s).

We now assess the model on the complete reinflection task, that is, where we are supposed to
read x(s) and reinflect it according to a choice of y. In this case we compare our model to a fully
supervised neural baseline (MED) and the MSVED model of Zhou and Neubig (2017). Table 6
shows the results. Note that semi-supervision leads to appreciable improvements. Our approach is
superior to MED (as intended) and performs very close to MSVED, though the difference is not too
large. Note that MSVED has more linguistic prior knowledge, since its morphological attributes
are modelled separately depending on the type of feature. The success of this model suggests that
the technology is ripe for use in an NMT architecture, though the situation in NMT is quite a bit
more complex, as previously discussed (See the following section).

4.2 Latent modelling of morphology for character-based NMT (UEDIN, UVA)

From independent word generation to sequence generation The model we developed in
Section 4.1 generates inflected words in isolation (i.e. not in a particular context) and conditions
rather crucially as we saw on a wordform that shares the lemma of the wordform being generated.
Extending that model to NMT is not trivial. First of all, we have to model an entire sequence of
inflected words, which we do by extending the stochastic decoder of Schulz et al. (2018), a VAE
with a sequence of continuous latent variables z = 〈z1, . . . , z|y|〉, one per generation step. We see
the sequence z as a sequence of lemma embeddings and augment that model with an additional
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Supervised Semi-Supervised

Language MED MSVED Ours MSVED Ours

Arabic 71.47 78.13 76.99 92.25 88.47
Finnish 91.15 75.59 77.75 89.55 90.20
Georgian 92.06 88.10 87.42 93.83 92.91
German 88.11 74.48 73.90 87.59 87.54
Hungarian 95.46 95.94 95.99 98.21 96.61
Maltese 79.49 82.18 80.12 85.67 86.00
Navajo 60.67 84.24 93.72 95.28 96.74
Russian 80.23 74.55 73.65 82.98 80.12
Spanish 93.28 85.41 88.98 92.99 92.99
Turkish 89.00 21.21 93.87 96.62 97.10

Average 84.09 83.08 84.44 91.40 90.87

Table 6: Aggregate accuracy for morphological reinflection. We report average across 3 independent
runs. For semi-supervision we use 1000 unlabelled data points from Task 1 and Task 2
datasets (note that we do not use the soruce morphology information available in Task 2).

Figure 7: Addressing posterior collapse in models of Turkish word generation: tSNE plot showing
latent space of two VAEs, one trained with KL annealing (left), one trained with MDR (right).
Each point represents the Gaussian mean for a given wordform, same colour implies sharing
the lemma.

sequence of latent variables, namely, f = 〈 f1, . . . , f|y|〉, each of which annotates the corresponding
token y j with discrete attributes. This takes the form:

p(y|x, θ) =

∫
Z

∑
f

|y|∏
j=1

p(z j|x, y< j, z< j, θ)︸               ︷︷               ︸
represent lemma

p( f j|x, y< j, z< j, z j, θ)︸                   ︷︷                   ︸
predict morphology

p(y j|x, y< j, z< j, z j, f j, θ)︸                       ︷︷                       ︸
generate wordform

d z . (4)

At each step we generate a complete target wordform y j with a model similar to our latent factor
model of Section 4.1. Instead of conditioning on a related wordform to infer the distribution over
lemma embeddings z j, we condition on the source sentence x and the prefix of already generated
target words y< j, which we represent with an attention-based NMT architecture. Morphological
features receive no supervision this time, since translation data are not typically annotated with
morphological attributes, and therefore the binary switches are entirely latent.7 However, exploit-
7 We need to decide on a fixed number of switches, as learning this number would require complex non-parametric

priors, and we do so by trying a handful of values. Note that for any number D, we have as many as 2D combinations
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Figure 8: The latent morphology model for computing word representations while translating the sen-
tence ‘... went home’ into Turkish (‘eve gitti’). The character-level decoder is initialised with
the attentional vector hi computed by the attention mechanism using current context ci and
the word representation ti as in Luong and Manning (2016).

(only in-domain) (multi-domain)
Model AR CS TR TR

BLEU chrF3 BLEU chrF3 BLEU chrF3 BLEU chrF3

Subwords 14.67 0.5625 16.60 0.5583 8.85 0.5225 10.65 0.5489
Char.s 12.72 0.5265 16.94 0.5608 10.63 0.5349 8.94 0.5265
Hierarch. 15.55 0.5609 16.79 0.5479 9.74 0.5127 10.35 0.5218
Hierarch. with LMM 16.06 0.5687 16.97 0.5575 10.93 0.5383 11.48 0.5575

Table 7: MT accuracy in Arabic (AR), Czech (CS) and Turkish (TR) under low-resource settings using
in-domain training data (middle column) and multi-domain training data (rightmost column).
LMM represents the Latent Morphology Model. All improvements over the baselines are
statistically significant (p-value < 0.05).

ing noisy supervision from a morphological analyser is an interesting direction for future work.
Each word y j is therefore represented by a continuous vector z j and a collection of discrete attrib-
utes f j. Here we again make use of sparse relaxations to binary random variables via the HardKuma
distribution (Bastings et al., 2019). Architecture details, the complete specification of the paramet-
erisation of the model, and its training algorithm can be found in our ICLR paper (Ataman et al.,
2020) along with software to reproduce the model.8

Results The experimental results given in Table 7 show the performance of each model in trans-
lating English into Arabic, Czech and Turkish. In Turkish, the most sparse target language in
our benchmark, using character-based decoding shows to be more advantageous compared to the
subword-level and hierarchical models, due to the fact that reduced granularity in the vocabulary
units might aid in better predicting words under conditions of high data sparsity. In Arabic, on
the other hand, using a hierarchical decoding model shows to be advantageous compared to the
character-level decoder, as it might be useful in better learning syntactic dependencies, whereas
it also outperforms the subword-level decoder. Using the latent morphology model provides im-

of features, thus even a relatively a small value (e.g., 32 or 64) increases the model capacity considerably.
8 https://github.com/d-ataman/lmm
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provements of 0.51 and 0.30 BLEU in Arabic and Turkish over the best performing baselines,
respectively. The fact that our model can efficiently work in both Arabic and Turkish suggests that
it can handle the generation of both concatenative and non-concatenative morphological transform-
ations. The results for English-to-Czech suggest that there might not be a specific advantage of
using either method for generating fusional morphology, where morphemes are already optimised
at the surface level, although our model is still able to achieve translation accuracy comparable to
the character-level model.

4.3 Variational NMT with morphological priors (UEDIN)

The model of Section 4.1 exploits some amount of linguistic annotation to learn how to inflect, or
reinflect, words in isolation. While that is a skill we want to endow a generator with, in a realistic
setting, some inflectional features will capture morphosyntactic agreement and constraints and
will depend on linguistic context. The model of Section 4.2 addresses the later limitation, but
gives up on morphological supervision altogether. The benefit of semi-supervision is that we can
bootstrap the model with the little morphological data we do have, and also train on the vast
amount of unlabelled data. In this section we aim to learn a generator of complex wordforms
during MT, thus inflecting words in context, but also exploiting some amount of supervision, and
thus benefit from semi-supervised learning. In Section 4.1 we learnt from incomplete supervision
by stochastically completing the data with an inference model, for efficient gradient-based learning
we used a relaxation to binary variables that admits unbiased and differentiable sampling. In this
section, semi-supervised learning is more challenging because we need to account for a sequence
of missing morphological attributes. To tackle this more complex problem, we turn to the approach
of Wolf-Sonkin et al. (2018), which we extend to translation data. This section reports on work
that is not yet published.

Morphological priors Our goal is to train a morphological inflector on unlabelled data. We do
so by first generating the morphological tags m = 〈m1, . . . ,mn〉 and the lemmata l = 〈l1, . . . , ln〉 and,
from a complex transformation of the two, the inflected words x = 〈x1, . . . , xn〉 that compromise a
sentence. Hence, l and m may be regarded as latent variables that can be marginalised out when no
morphological data is available:

p(x|θ) =
∑

l

∑
m

|x|∏
i=1

pθ(xi|x<i, l≤i,m≤i, θ)p(li|x<i, l<i,m≤i, θ)p(mi|x<i, l<i,m<i, θ) . (5)

Sadly, this marginalisation is intractable: one would need to consider an exponential number of
morphological tags and a potentially infinite number of lemmata sequences. Hence, we have to
fall back on approximate inference to actually learn such a model. Note that unlike the models of
Section 4.1 and 4.2, here the lematta are discrete categories. Gradient estimation for categorical
variables is far more difficult than for binary variables, and unbiased relaxations much harder
to design (Mohamed et al., 2019). Wolf-Sonkin et al. (2018) choose to approach the problem
via the wake-sleep algorithm (WS; Hinton et al., 1995), which circumvents the need for gradient
estimation by alternating two related objectives. The parameters θ of the generative model are
estimated to maximise ∑

x∈D

log p(x,m, l|θ) . (6)
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For labelled data, m and l are observed along with x. For unlabelled data, m and l are sampled from
an independent approximation q(l,m|x, φ) to the model’s true posterior distribution p(l,m|x, θ).
This corresponds to gradient-based maximum likelihood learning with imputed data. The para-
meters φ of the approximate posterior are estimated to maximise∑

〈m,l,x〉∼p?

log q(m, l|x, φ) . (7)

For labelled data, 〈m, l, x〉 is a sample from the data, and the objective corresponds to maximum-
likelihood learning for a morphological analyser. For unlabelled data, wake-sleep (WS) approx-
imates the objective using 〈m, l, x〉 generated from the model distribution p(m, l, x|θ) via ancestral
sampling. This corresponds to gradient-based maximum likelihood learning for dream data, in the
terminology of the original paper (Hinton et al., 1995).

Wake-Sleep Since the wake-sleep algorithm does not require a differentiable reparametrisation,
there is some flexibility regarding the selection of a variational posterior. The model must adhere
to the following qualities:

• It must allow for sampling of lemmata and morphological tags given an inflected sequence.

• It must be able to assess the likelihood of external samples, i.e. it must be able to return the
log-probability of provided lemmata and morphological tags given an inflected sequence.

• Its parameters must allow for optimisation through backpropagation.

We selected LEMMING (Thomas et al.), a joint morphological tagger and lemmatiser, as a vari-
ational posterior. This model is a higher-order, linear-chain conditional random field, which ad-
heres to the criteria outlined above. The authors claim that this model outperforms neural alternat-
ives in a low-resource setting and is therefore a natural choice as variational posterior.

Variational Inference While the Wake-Sleep algorithm circumvents the need for back-propagation
through Monte Carlo (MC) samples, and thus cannot suffer from problems such as noisy gradi-
ents, the two networks are trained on two different objectives. The second objective, in particular,
which updates the posterior approximation, is based on updates towards dream data, which may
be particularly bad early on in training when the model is not yet very good, or throughout training
if we do not have enough labelled data. A unified objective can be found in variational inference
(VI; Jordan et al., 1999), in particular, in the form of a variational auto-encoder (VAE; Kingma and
Welling, 2014). VAEs, however, require gradient estimation through samples that can be done via
the score function method (Rubinstein, 1986; Williams, 1992) or via reparameterised gradients.
The former is very noisy and calls for complex variance reduction techniques, the latter is unavail-
able for categorical variables (such as l and m). For now we settled for a biased proxy gradient
known as straight-through estimator (STE; Bengio et al., 2013) in combination with a relaxation
to categorical variables known as Concrete distribution (a.k.a. Gumbel-Softmax; Maddison et al.,
2017; Jang et al., 2017).

These models are trained on a set of approximately 57, 000 English-Dutch sentences, and approx-
imately 50, 000 monolingual morphologically annotated Dutch data. We test four models: stand-
ard BPE-to-Char translation (BPE2Char), BPE-to-Char translation into interleaved lemmas and
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morphological tags (BPE2LT), a Wake-Sleep model (WS) with the BPE2LT model as prior and
a jointly trained morphological inflector that outputs the target words character-by-character and
a variational autoencoder with a BPE2LT prior, morphological inflector and a jointly trained pos-
terior annotator that predicts lemmas and morphological tags from inflected forms (VAE). Note that
this VAE is trained in a semi-supervised manner, where the posterior receives supervision from the
separate monolingual morphologically annotated Dutch data. The WS and BPE2LT model were
trained on the En-Du dataset only, which was morphologically annotated by an external Hidden
Markov Model trained on the Dutch dataset (LEMMING).

Model W.Bound. Schedule KL REC Prior Posterior
BLEU CHRF L-BLEU L-CHRF BLEU CHRF

BPE2Char Implicit - - - 13.28 40.98 - - - -
BPE2LT Implicit - - - - - 16.27 42.33 - -

WS Implicit - 58.65 8.70 10.68 38.67 15.84 41.32 67.50 91.54
Explicit - - - - - - - - -

VAE
Implicit

Fixed 146.50 41.88 3.84 33.45 5.53 35.71 41.03 72.62
No-Joint 122.81 18.75 5.85 38.68 7.11 40.96 55.43 86.02

Explicit
Fixed - - - - - - - -
No-Joint - - - - - - - -

Table 8: English to Dutch translation on a small dataset.

Results and discussion Results can be found in Table 8. For the WS and VAE model we
report the KL-divergence between the prior and posterior, and the reconstruction error of the mor-
phological inflector. Note that the KL of the WS model is not exact but a single sample estimate
based on the data annotated by the external posterior. For all models we report the SacreBLEU and
SacreCHRF scores, based on three different output levels. The scores under Prior refer to scores
obtained when translating from English to Dutch using the prior/BPE2LT/BPE2Char model. We
differentiate between scores at the level of inflected forms and scores at the level of lemmas (with
L- prefix). The scores under Posterior are obtained by encoding Dutch with the posterior and de-
coding with the morphological inflector and can be interpreted as estimates of the quality of the
auto-encoder.

It can be seen that neither the WS nor the VAE model can beat the BPE2LT and BPE2Char
baselines. The Wake-Sleep model achieves similar quality to the BPE2LT model, but performs
sub-par after inflection when compared to the BPE2Char model. This implies that there is a loss of
quality during the inflection step. This can also be seen from the good, but not perfect, scores that
the model attains on posterior BLEU/CHRF and reconstruction error. It therefore seems that the
complication of the model structure by translating using this two-step procedure based on noisy
annotation only hurts the final translation quality, at least in the low-resource setting under consid-
eration.

The VAE model performs much worse. Neither BLEU nor CHRF come close to the baselines, and
the auto-encoder reconstruction is also sub-par when compared to the WS model. The most likely
cause is model optimisation. It could be that the fixed schedule is inadequate and more care is
needed to balance the various components of the model. One observation that could be made from
the tensorboard logs is that during the joint training phase BLEU and CHRF always deteriorate,
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even though the KL-divergence improves. This indicates that the posterior is collapsing towards
the prior, whereas ideally the prior would ‘collapse’ towards the posterior. This might not be
surprising, as the task of the prior (translation) is more challenging than the task of the posterior
(annotating). There are no current plans to continue with this particular piece of research.

5 Publications

The following papers are the result of research related to morphological structure carried out in the
GoURMET project:

• Víctor M. Sánchez-Cartagena, Juan Antonio Pérez-Ortiz, and Felipe Sánchez-Martínez. The
Universitat d’Alacant Submissions to the English-to-Kazakh News Translation Task at WMT
2019. In Proceedings of the 4th Conference on Machine Translation (Volume 2: Shared Task
Papers, Day 1), pages 356–363, Florence, Italy, 2019

• Víctor Manuel Sánchez-Cartagena, Juan Antonio Pérez-Ortiz, and Felipe Sánchez-Martínez.
Understanding the effect of morphological tags in under-resourced neural machine transla-
tion. In Submitted to the International Conference on Computational Linguistics, 2020

• Duygu Ataman, Orhan Firat, Mattia A. Di Gangi, Marcello Federico, and Alexandra Birch.
On the Importance of Word Boundaries in Character-level Neural Machine Translation. In
Proceedings of the 3rd Workshop on Neural Generation and Translation, pages 187–193,
Hong Kong, 2019

• Duygu Ataman, Wilker Aziz, and Alexandra Birch. A Latent Morphology Model for Open-
Vocabulary Neural Machine Translation. In Proceedings of the 8th International Conference
on Learning Representations, Virtual Conference, Formerly Addis Ababa, Ethiopia, 2020

• Akash Raj Komarlu Narendra Gupta. Semi-supervised morphological reinflection using
rectified random variables. Master’s thesis, University of Amsterdam, 2019

6 Software and code

• Morphological segmentation using Apertium:
https://github.com/transducens/smart-segmentation

• Code accompanying (Ataman et al., 2019):
https://github.com/d-ataman/Char-NMT

• Code accomanying (Ataman et al., 2020):
https://github.com/d-ataman/lmm
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7 Conclusion

Having described the various research associatd with this work package, we conclude with a sum-
mary of the work carried out and the current status of the work package as a whole.

With respect to the initial proposal, all three tasks have progressed well, with a number of lines of
research being pursued. Tasks 1 and 3 have received most attention (with three research outputs),
with a little less to Task 2, which is more specific in scope. A summary of the activities of each
task and plans for future work can be found below:

Task 1 Developing linguistically informed NMT models using morphology
The scope of Task 1 has expanded slightly with respect to its original definition to now
include the impact of using linguistically informed models on the quality of MT. Whereas
the initial focus was on morphological models of segmentation, it now also includes work
on integrating morphological information from analysers, such as PoS tags and morpholo-
gical tags (Section 2.3). This work, applied to a range of different languages, showed that
both PoS and morphological tags are useful on both the source- and target-side of the data,
but particularly on the target-side when using the coarser grained PoS tags. The two other
lines of research looked into segmentation strategies. The first (Section 2.1), applied to
English-Kazakh translation, found that using morphologically guided subword segmenta-
tion, using an Apertium morphological analyser, improves translation qualtiy over using
the more commonly used and less linguistically inpsired BPE strategy. The second work
on segmentation (Section 2.2) takes the idea of subword segmentation further to find a
compromise between whole word and character-level decoding by proposing a hierarch-
ical decoder, whereby individual words are generated character by character. The model
can often reach comparable scores (although this is language-dependent) to the standard
subword based models and uses approximately three times fewer parameters. There is
some future work planned for this work package, notably for the inclusion of morpholo-
gical information in a multi-task setting. However, progress has been made more quickly
than initially set out in the proposal and therefore fewer resources are likely to be dedicated
to this task in the second half of the project.

Task 2 Jointly learning alignments and morphology
The second task will be a focus of the second half of the project, as there is currently no
completed work associated with it. A proposal has been drawn up for research in this
direction and work on it has already begun.

Task 3 Exploit factors encoding latent features of morphology
Task 3 has progressed faster than initially proposed in the project (it was expected to start
later than the other two tasks). There are therefore more contributions than expected at the
half-way stage. The three contributions look at designing models, either of morphology
or applied to NMT, that induce morphological features through the use of latent variables.
The first work cited (Section 4.1) investigates morphological form inflection as a task in
itself, applied to the SIGMORPHON task, and this work is then extended to the case of
NMT in Section 4.2, where morphological features are learnt in an entirely unsupservised
fashion within the model. The third work is an MT model using latent morphology that
looks at reintroducing some supervision back into training.
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